THEODORE ROOSEVELT RESERVOIR 1995 SEDIMENTATION SURVEY

U.S. Department of the Interior Bureau of Reclamation

ERRATA

Theodore Roosevelt Reservoir 1995 Sedimentation Survey

Page 10, Table 1, item 9: This should read 2,100 feet rather than 2214.

Page 12, Table 1, item 47, footnote 1: ¹ Modifications to Roosevelt Dam completed in 1995 raised the dam elevation and lowered the spillway sill elevation. The original dam elevation was 2142 and the spillway elevation (top of radial gates) was 2136.

í.

Page 13. Table 2, footnote 7: Computed sediment expressed as a percentage of total computed sediment (182,185 acre-feet).

REPOR	r docu	MENTATIO	N PAGE		Form Approved OMB No. 0704-0188
maintaining the data needed, and comple	ting and reviewing t den, to Washington I	he collection of information. Headquarters Services, Dire	Send comments regarding this bu ctorate for Information Operations a	rden estimate or a	s, searching existing data sources, gathering a iny other aspect of this collection of informati Jefferson Davis Highway, Suit 1204, Arlington
1. AGENCY USE ONLY (Leave B	lank) 2. F	REPORT DATE ay 1996	3. REPORT TYP Final	E AND DATES	COVERED
4. TITLE AND SUBTITLE Theodore Roosevelt Rese 1995 Sedimentation Surv	rvoir				IDING NUMBERS
6. AUTHOR(S) Joe Lyons and Lori Lest					
7. PERFORMING ORGANIZATION Bureau of Reclamation Technical Service Center Denver CO 80225		ADDRESS(ES)			FORMING ORGANIZATION PORT NUMBER
9. SPONSORING/MONITORING A Bureau of Reclamation	GENCY NAME(S) AND ADDRESS(ES)	n senset and a sense of the sense		ONSORING/MONITORING BENCY REPORT NUMBER
Denver Federal Center PO Box 25007 Denver CO 80225-0007					DIBR
11. SUPPLEMENTARY NOTES Hard copy available at th	e Technical	Service Center, I	Denver, Colorado		
2a. DISTRIBUTION/AVAILABILIT Available from the Natior Operations Division, 5285	al Technica			12b. Di	STRIBUTION CODE
relationship. The data we accumulation since dam c nterfaced with a GPS (Gl Roosevelt Reservoir. The 1994. The reservoir topog As of April 1995, at top of vas 3,432,408 acre-feet. S capacity have been lost be	on (Reclama for developi ere also used losure in 19 obal Position above-water raphy was d dam elevati Since the ini low elevatio olume. Since	ing a reservoir to to calculate the 09. The bathyme ning System) tha reservoir area w leveloped by a con on 2,218 feet, the tial filling in 1909 n 2,136 feet (top)	pographic map and c volume of reservoir c tric survey used soni t gave continuous son as measured from ac nputer graphics prog reservoir surface ar 0, about 182,185 acre	omputing a apacity los c depth rec unding posi erial photog gram using ea was 31,8 e-feet of The servation c	a present storage-elevation s attributable to sediment cording equipment itions throughout Theodore graphy obtained in October the collected data. 352 acres and total capacity eodore Roosevelt Reservoir apacity), resulting in a 12-
,136 feet is 2,121 acre-fee	et per year.				
4. SUBJECT TERMS – - reservo onar/ sediment distributio	et per year. ir area and	capacity/ sedimer	ntation/ reservoir sur	veys/ rvey/	15. NUMBER OF PAGES 66 16. PRICE CODE
4. SUBJECT TERMS – - reservo	et per year. ir area and on/ contour a	capacity/ sedimer area/ reservoir ar (CLASSIFICATION	ntation/ reservoir sur	rvey/	15. NUMBER OF PAGES 66

....

THEODORE ROOSEVELT RESERVOIR

1995 SEDIMENTATION SURVEY

by

Joe Lyons and Lori Lest

Sedimentation and River Hydraulics Group Water Resources Services Technical Service Center Denver, Colorado

May 1996

ACKNOWLEDGMENTS

The Bureau of Reclamation's Sedimentation and River Hydraulics Group of the TSC (Technical Service Center) prepared and published this report. Joe Lyons was the TSC team leader for the preparation of this report and Ron Ferrari conducted the hydrographic survey. Lori Lest and Norm Prince of the TSC and Rick Navratil from the Phoenix Area Office assisted in the completion of the report. Personnel from the Phoenix Area Office performed the required land survey for the hydrographic and aerial data collection. Rick Navratil conducted the aerial photography and hydrographic data interpretation needed to generate the new topographical maps and area-capacity tables. Ron Ferrari performed the peer review of this documentation.

U.S. Department of the Interior Mission Statement

As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally-owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national parks and historical places; and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to ensure that their development is in the best interests of all our people by encouraging stewardship and citizen participation in their care. The Department also has a major responsibility for American Indian reservation communities and for people who live in island territories under U.S. administration.

The information contained in this report regarding commercial products or firms may not be used for advertising or promotional purposes and is not to be construed as an endorsement of any product or firm by the Bureau of Reclamation.

The information contained in this report was developed for the Bureau of Reclamation; no warranty as to the accuracy, usefulness, or completeness is expressed or implied.

CONTENTS

Page

Introduction1Summary and conclusions1Reservoir operations2Hydrographic survey equipment and method3Survey history3Boat and shore equipment3GPS technology and equipment31995 survey methods5Reservoir area and capacity6Topography development6Development of 1995 contour areas71995 storage capacity7Reservoir sediment analyses8References9

TABLES

Table

1	Reservoir sediment data summary (page 1 of 3)	10
1	Reservoir sediment data summary (page 2 of 3)	11
1	Reservoir sediment data summary (page 3 of 3)	12
	Summary of 1995 survey results and sediment distribution	
3	Roosevelt Dam range line bank stations (page 1 of 2)	14
	Roosevelt Dam range line bank stations (page 2 of 2)	

FIGURES

Figure

1a	Theodore Roosevelt Reservoir topography and location map (sheet 1 of 2)	17
1b	Theodore Roosevelt Reservoir topography and location map (sheet 2 of 2)	
2	1995 area and capacity curves for Theodore Roosevelt Reservoir	
3	Theodore Roosevelt Reservoir ground profile for range line 1	
4	Theodore Roosevelt Reservoir ground profile for range line 2	
5	Theodore Roosevelt Reservoir ground profile for range line 3	24
6	Theodore Roosevelt Reservoir ground profile for range line 4	25
7	Theodore Roosevelt Reservoir ground profile for range line 5	
8	Theodore Roosevelt Reservoir ground profile for range line 6	27
9	Theodore Roosevelt Reservoir ground profile for range line 7	28
10	Theodore Roosevelt Reservoir ground profile for range line 8	29
11	Theodore Roosevelt Reservoir ground profile for range line 9	30
12	Theodore Roosevelt Reservoir ground profile for range line 10	
13	Theodore Roosevelt Reservoir ground profile for range line 11	32
14	Theodore Roosevelt Reservoir ground profile for range line 12	33
15	Theodore Roosevelt Reservoir ground profile for range line 13	34
16	Theodore Roosevelt Reservoir ground profile for range line 14	35
17	Theodore Roosevelt Reservoir ground profile for range line 15	36
18	Theodore Roosevelt Reservoir ground profile for range line 16	37
19	Theodore Roosevelt Reservoir ground profile for range line 17	38
20	Theodore Roosevelt Reservoir ground profile for range line 18	39
21	Theodore Roosevelt Reservoir ground profile for range line 19	10
22	Theodore Roosevelt Reservoir ground profile for range line 20	

CONTENTS — CONTINUED

FIGURES — CONTINUED

Figure

*,*æ

23	Theodore Roosevelt Reservoir ground profile for range line 21	42
24	Theodore Roosevelt Reservoir ground profile for range line 22	43
25	Theodore Roosevelt Reservoir ground profile for range line 23	44
26	Theodore Roosevelt Reservoir ground profile for range line 24	45
27	Theodore Roosevelt Reservoir ground profile for range line 30	46
28	Theodore Roosevelt Reservoir ground profile for range line 31	47
29	Theodore Roosevelt Reservoir ground profile for range line 32	48
30	Theodore Roosevelt Reservoir ground profile for range line 33	49
31	Theodore Roosevelt Reservoir ground profile for range line 34	50
32	Theodore Roosevelt Reservoir ground profile for range line 35	51
33	Theodore Roosevelt Reservoir ground profile for range line 36	52
34	Theodore Roosevelt Reservoir ground profile for range line 37	53
35	Theodore Roosevelt Reservoir ground profile for range line 38	54
36	Theodore Roosevelt Reservoir ground profile for range line 39	55
37	Theodore Roosevelt Reservoir ground profile for range line 40	56
38	Theodore Roosevelt Reservoir ground profile for range line 41	57
39	Theodore Roosevelt Reservoir ground profile for range line 42	58
40	Theodore Roosevelt Reservoir ground profile for range line 43	59
41	Theodore Roosevelt Reservoir ground profile for range line 50	60
42	Theodore Roosevelt Reservoir ground profile for range line 60	61
43	Theodore Roosevelt Reservoir ground profile for range line 70	62
44	Theodore Roosevelt Reservoir ground profile for range line 71	63
45	Theodore Roosevelt Reservoir ground profile for range line 80	64
46	Thalweg profile for the Salt River Arm of Theodore Roosevelt Reservoir	65
47	Thalweg profile for the Tonto River Arm of Theodore Roosevelt Reservoir	66

INTRODUCTION

Theodore Roosevelt Dam was the first major structure built by the Reclamation Service (now the Bureau of Reclamation [Reclamation]) after its formation in 1902 by the Reclamation Act. Construction of the dam began in 1903 and was completed in 1911. Located about 80 miles northeast of Phoenix, Arizona, on the Salt River, the dam is part of the multipurpose Salt River Project that controls floods, generates power, and stores irrigation water.

A modification to the structural height of Roosevelt Dam completed in 1995 raised the dam crest elevation to 2,218 feet, an increase of 77 feet above the pre-modified dam crest elevation of 2,141 feet. As recomputed in 1981 (Lara, 1982), the original (as surveyed in 1909) capacity of the lake was 1,530,499 acre-feet at elevation 2,136 feet. The surface area at elevation 2,136 feet was measured at 17,826 acres in 1909. The 1995 survey resulted in a surface area of 19,075 acres at elevation 2,136 feet and a capacity of 1,348,314 acre-feet at this elevation.

Roosevelt Dam controls runoff from the Salt River, Tonto Creek, and many smaller tributaries. The Salt River arm of the lake is about 16 miles long; the Tonto Creek arm is about 11 miles long (fig. 1). The net sediment contributing area above the reservoir is 5,709 square miles.

SUMMARY AND CONCLUSIONS

This report presents the 1995 results of the first extensive reservoir survey of Theodore Roosevelt Lake. All seven previous reservoir surveys were completed by re-surveying established range lines across the reservoir. In 1995, a complete bathymetric survey of the lake was accomplished. The primary objectives of the survey were to gather data needed to:

- develop reservoir topography to be used as the basis for computing sediment accumulation and for future surveys
- compute area-capacity relationships
- resolve conflicts about storage capacity
- estimate storage depletion caused by sedimentation deposition since closure of Theodore Roosevelt Dam

The bathymetric survey was run using sonic depth recording equipment interfaced with a DGPS (differential global positioning system) capable of determining sounding locations within the reservoir. The system continuously recorded depth and horizontal coordinates of the survey boat as it was navigated along grid lines covering Theodore Roosevelt Reservoir. The positioning system provided information to allow the boat operator to maintain course along these grid lines. Water surface elevations recorded by a Reclamation gage during the time of collection were used to convert the sonic depth measurements to true lake bottom elevations.

^{*} The definition of terms such as "structural height," "hydraulic height," etc., may be found in manuals such as Reclamation's *Design of Small Dams* and *Guide for Preparation of Standing Operating Procedures for Dams and Reservoirs*, or ASCE's *Nomenclature for Hydraulics*.

The above-water Theodore Roosevelt Reservoir area was measured from aerial photography obtained in October 1994. Photo interpretation produced horizontal positioning and elevations throughout the reservoir area. The new reservoir contour map is a combination of the aerial and underwater survey data. The 1995 reservoir surface areas at predetermined 5-foot contour intervals were generated by a computer graphics program using the collected data. The area and capacity tables were produced by a computer program that uses measured contour surface areas and a curve-fitting technique to compute area and capacity at prescribed elevation increments.

Table 1 summarizes the reservoir sedimentation and watershed characteristics for the 1995 survey. The 1995 survey determined that the reservoir has a total storage capacity of 1,348,314 acre-feet and a surface area of 19,075 acres at water surface elevation 2,136 feet. Since closure in 1909, the reservoir has accumulated an estimated volume of 182,185 acre-feet of sediment below elevation 2,136 feet during the period of 85.9 years. This volume represents a 12-percent loss in total capacity and an average annual loss of 2,121 acre-feet.

Previous estimates of reservoir area and capacity were based upon topographic mapping developed from plane table surveys accomplished in the early part of this century. The bathymetric surveying and aerial photography done for the 1995 survey resulted in a much improved (more accurate) estimate of existing reservoir area and capacity.

RESERVOIR OPERATIONS

The reservoir is a multi-use facility having (following values are from the Water Resources Management Division, PxAO-7450, Phoenix Area Office, Bureau of Reclamation):

- 1,223,169 acre-feet of surcharge storage between elevations 2,175 feet and 2,218 feet.
- 556,196 acre-feet of flood control space between elevations 2,151 feet and 2,175 feet.
- 1,634,391 acre-feet of active conservation storage space between elevations 1,989 feet and 2,151 feet.
- 18,652 acre-feet of dead storage below elevation 1,989 feet.

The capacities are dynamic in that they will undergo periodic adjustment approximately every 10 years based on a complex agreement between several valley cities, Salt River Project, and Reclamation. Some of the capacities as listed in this section are *not* the initial capacities that will be used after the dam is declared substantially complete.

Theodore Roosevelt Reservoir receives the majority of its inflow from the Salt River and Tonto Creek watersheds. Available records for calendar years 1909 through 1995 show that the average inflow into the reservoir was 752,279 acre-feet per year. This inflow computes to a mean annual runoff of 2.47 inches for the 5,709-square-mile basin. The inflow and end-ofmonth stage records in table 1 show the annual fluctuation of the reservoir. Project operations began in May 1907, and storage operations started 2 years later in May 1909. Available records show Theodore Roosevelt Reservoir operation ranging from elevation 1,947 feet in water year 1910 to elevation 2,139 feet in water year 1993.

HYDROGRAPHIC SURVEY EQUIPMENT AND METHOD

Survey History

× 🖗

6

· *

The original Theodore Roosevelt Reservoir topographic map, drawing 25-P-48, dated April 1915, shows the stations of the range line endpoints in the 1915 local survey coordinates. No other information on surface area and contour development was located. It is assumed the original surface areas were mapped by a plane table survey, prior to dam closure, at a 10-foot contour accuracy. The original surface area values appear in column (2) of table 2. Column (3) of table 2 gives the original capacity of Theodore Roosevelt Reservoir recomputed in 1981 using the area-capacity computer program ACAP (Reclamation, 1985).

Boat and Shore Equipment

The hydrographic survey equipment was mounted in the cabin of a 24-foot tri-hull aluminum vessel equipped with twin in-board motors. The hydrographic system contained on the survey vessel consisted of a GPS (global positioning system) receiver with a built-in radio and omnidirectional antenna, dual frequency depth sounder, helmsman display for navigation, plotter, computer, and hydrographic system software for collecting the underwater data. Power to the equipment was supplied by an on-board generator.

The shore equipment included a second GPS receiver with a built-in radio and omnidirectional antenna. The GPS receiver and antenna were mounted on a survey tripod over a known datum point. The power for the shore units was provided by a 12-volt battery. To obtain the maximum radio transmission range, known datum points with clear line-of-sight to the survey boat were selected.

GPS Technology and Equipment

The positioning system that was used at Theodore Roosevelt Reservoir was NAVSTAR (NAVigation Satellite Timing and Ranging) GPS, an all weather, radio based, satellite navigation system that enables users to accurately determine 3-dimensional position. The NAVSTAR system's primary mission is to provide passive global positioning and navigation for land, air, and sea based strategic and tactical forces and is operated and maintained by DOD (Department of Defense). The GPS receiver measures the distances between the satellites and itself and determines the receiver's position from the intersections of the multiple range vectors. Distances are determined by accurately measuring the time a signal pulse takes to travel from the satellite to the receiver.

The NAVSTAR system consists of three segments:

- The space segment is a network of 24 satellites maintained in precise orbits, about 10,900 nautical miles above the earth, each completing an orbit every 12 hours.
- The ground control segment tracks the satellites, determines their precise orbits, and periodically transmits correction and other system data to all the satellites, which are then retransmitted to the user segment.
- The user segment is the GPS receivers, which measure the broadcasts from the satellites and calculate the position of the receivers.

The GPS receivers use the satellites as reference points for triangulating their position on earth. The position is calculated from distance measurements to the satellites that are determined by the time a radio signal takes to reach the receiver from the satellite. To calculate the receiver's position on earth, the satellite distance and the satellite's position in The satellites transmit signals to the GPS receivers for distance space are needed. measurements along with the data messages about their exact orbital location and operational status. The satellites transmit two "L" band frequencies for the distance measurement signals called L1 and L2. At least four satellite observations are required to mathematically solve for the four unknown receiver parameters (latitude, longitude, altitude, and time). The time unknown is caused by the clock error between the expensive satellite atomic clocks and the imperfect clocks in the GPS receivers. For hydrographic surveying of altitude, the Theodore Roosevelt Reservoir water surface elevation parameter was known, which realistically meant only three satellite observations were needed to track the survey vessel. During the Theodore Roosevelt Reservoir survey, at least five satellites were used for position calculations. During much of the survey, the best six available satellites were used to determine the position of the survey vessel.

The GPS receiver's absolute position is not as accurate as it appears in theory because of the function of range measurement precision and geometric position of the satellites. Precision is affected by several factors: time, because of the clock differences; and atmospheric delays caused by the effect on the radio signal by the ionosphere. GDOP (geometric dilution of precision) describes the geometrical uncertainty and is a function of the relative geometry of the satellites and the user. Generally, the closer together in angle two satellites are from the receiver, the greater the GDOP. GDOP is broken into components: PDOP is position dilution of precision (x,y,z); HDOP is horizontal dilution of precision (x,y). The components are based only on the geometry of the satellites. The PDOP and HDOP were monitored during the Theodore Roosevelt Reservoir Survey, and for the majority of the time, they were less than 3, which is well within the acceptable limits of horizontal accuracy for Class 1 and Class 2 level surveys (Corps of Engineers, 1991).

An additional and larger error source of GPS collection is caused by false signal projection, called S/A (selective availability). The DOD implements S/A to discourage the use of the satellite system as a guidance tool by hostile forces. Positions determined by a single receiver when S/A is active can have errors of up to 100 meters.

A method of collection to resolve or cancel the inherent errors of GPS (satellite position or S/A, clock differences, atmospheric delay, etc.) is called DGPS (differential GPS). DGPS was used during the Theodore Roosevelt Reservoir survey to determine positions of the moving survey vessel in real time. DGPS determines the position of one receiver in reference to another and is a method of increasing position accuracies by eliminating or minimizing the uncertainties. Differential positioning is not concerned with the absolute position of each unit, but with the relative difference between the positions of the two units, which are simultaneously observing the same satellites. The inherent errors are mostly canceled because the satellite transmission is essentially the same at both receivers.

At a known geographical benchmark, one GPS receiver is programmed with the known coordinates and stationed over the geographical benchmark. This receiver, known as the master or reference unit, remains over the known benchmark, monitors the movement of the satellites, and calculates its apparent geographical position by direct reception from the satellites. The inherent errors in the satellite position are determined relative to the master receiver's programmed position, and the necessary corrections or differences are transmitted to the mobile GPS receiver on the survey vessel. For the Theodore Roosevelt Reservoir Survey, position corrections were determined by the master receiver and transmitted via a UHF (ultrahigh frequency) radio link every 3 seconds to the survey vessel mobile receiver. The survey vessel's GPS receiver used the corrections along with the satellite information it received to determine the vessel's differential location. Using DGPS resulted in positional accuracies of 1 to 2 meters for the moving vessel compared to positional accuracies of 100 meters with a single receiver.

The TSC (Technical Service Center) mobile and reference GPS units are identical in construction and consist of a 6-channel L1 C/A (coarse acquisition) code continuous parallel tracking receiver, an internal modem, and a UHF radio transceiver. The differential corrections from the reference station to the mobile station are transmitted using the industry standard RTCM (Radio Technical Commission for Maritime Services) message protocol via the UHF radio link. The programming to the mobile or reference GPS unit is accomplished by entering necessary information via a notebook computer. The TSC's GPS system has the capability of establishing or confirming the land base control points by using notebook computers for logging data and post-processing software. The GPS collection system has the capability of collecting the data in 1927 or 1983 NAD (North American Datums) in the surveyed area's state plane coordinate system's zone, which for the 1995 Theodore Roosevelt Reservoir survey was the Arizona State Plane Coordinates NAD27 Central Zone.

1995 Survey Methods

7.5

2. às

The Theodore Roosevelt Reservoir hydrographic survey was completed using the contour method as outlined by Blanton (1982). The procedure involved collecting adequate coordinate data for developing a reliable contour map by bathymetric and aerial survey methods. The bathymetric survey used sonic depth recording equipment interfaced with GPS positioning that gave continuous sounding positions throughout Theodore Roosevelt Reservoir.

Reclamation's Phoenix Area Office personnel used GPS equipment and standard land surveying methods to establish horizontal and vertical control points for the hydrographic survey.

The above-water data were collected by aerial photography obtained on October 28, 1994, at an approximate reservoir elevation of 2,087 feet. Reclamation's Phoenix Area office conducted the aerial photography interpretation and provided contour data at 5-foot intervals to define the reservoir topography.

The Theodore Roosevelt Reservoir bathymetric survey began on April 18, 1995, and concluded on April 23, 1995. During this time, the average water surface of the reservoir was 2,125.7 feet. The bathymetric survey was run using sonic depth recording equipment interfaced with a DGPS capable of determining sounding locations within the reservoir. The survey system software was capable of recording, in 1-second increments, depths and horizontal coordinates as the survey boat moved along predetermined grid lines covering the reservoir. To produce adequate data for developing contours of Theodore Roosevelt Reservoir, grid lines or transects accessible by the survey boat were collected at a spacing of 400 feet. Data were collected at an average of 2-second intervals; additional data were collected along the shore as the boat traversed to the next transect. The survey vessel's guidance system gave directions to the boat operator to assist in maintaining course along these predetermined grid lines. During each

run, the depth and position data were recorded on the notebook computer hard drive for subsequent processing by TSC personnel. A graph plotter was used in the field to track the boat and ensure adequate coverage during the collection process. The underwater data set included 70,500 coordinate points. Water surface elevations recorded by a Reclamation gage at the dam were used to convert the sonic depth measurements to true lake bottom elevations.

The TSC's depth sounder has a 208-kilohertz transducer that reflects the first-encountered bottom surface which is used for sediment surveys. The bottom is determined by measuring elapsed time between the transmission of the sound pulse from the transducer to the waterway bottom and the reception of its echo at the transducer. Prior to data collection and periodically through the survey, the depth sounder was calibrated by lowering a deflector plate below the boat by cables with known depths marked by beads. The depth sounder was calibrated by adjusting the speed of sound, which can vary with water density, salinity, temperature, turbidity, and other conditions. The accuracy of an instantaneous reading from the depth finder is estimated to be ± 0.5 feet, but these errors are minimized over the entire survey. The estimated accuracy takes into consideration calibration error and the collection of depth data when the boat is moving. The collected data were digitally transmitted to the computer collection system via an RS232 port. The depth sounder also produces an analog hard copy chart of the measured depths. These analog charts were printed for all survey lines as the data were collected and recorded by the computer. The charts were analyzed during post processing, and when the analog-charted depths indicated a difference from the recorded computer bottom depths, the computer data files were modified to agree with the analog chart depth.

RESERVOIR AREA AND CAPACITY

Topography Development

The aerial photography was obtained October 28, 1994, at elevation 8,000 feet a.m.t. (above mean terrain). Fifty-eight photogrammetric maps were created from this photography. The maps were compiled at a scale of 1 inch = 200 feet with a 5-foot contour interval. The elevation range was 2,090 feet to 2,225 feet plus the water surface of 2,087.0 feet and the new top of dam elevation, 2,218.0 feet. The contours were digitized directly from the photographs using an SD2000 Stereo Plotter and DAT/EM mapping software at Reclamation's Phoenix Area Office. CADD (computer aided design and drafting) software was used to create 3-dimensional models of the reservoir. For purposes of computing areas and saving disk space, the contours were filtered to a scale of 1 inch = 500 feet. This filtering involved removing as many vertex points as possible from any given contour without changing the accuracy of the contour.

For contours below elevation 2,087 feet, the sounding information collected by Denver TSC personnel was used to develop the contour map. About 70,500 data points were collected during April 18 to 23, 1995. The water surface elevation at this time averaged 2,125.7 feet. This procedure gave a desired overlap of the aerial and underwater mapping. Sounding data points above elevation 2,087 feet were eliminated from the data set. Using the digitized water line (elevation 2,087 feet) and the remaining sounding points, contours were developed for the underwater area using TIN (triangulated irregular network) software. These contours were created every 5 feet from elevation 1,965 feet to elevation 2,085 feet. Manual editing of the contours was performed in the CADD software to eliminate inconsistencies and to produce hard copy maps. The contours were then filtered to a scale of 1 inch = 500 feet to match the above water contours.

Development of 1995 Contour Areas

The 1995 contour surface areas for Theodore Roosevelt Reservoir were computed in 5-foot intervals from elevation 1,965 feet to elevation 2,225 feet using the TIN and aerial mapping data discussed above. The areas for each elevation were computed in acres. This procedure was done using CADD software for the computation of the area of a closed, planar polygon. Deductions were made for any island contours within the main contour for a given elevation. Based on the input data, elevation 1,963 feet was determined to be the low point in the reservoir. An area was also calculated for elevation 1,964 feet. The 1995 topography for Theodore Roosevelt Reservoir is shown on figures 1a and 1b.

1995 Storage Capacity

The storage-elevation relationships based on the measured surface areas were developed using the area-capacity computer program ACAP (Reclamation, 1985). The 1995 surface areas at 5foot contour intervals from elevation 1,965 feet to 2,225 feet, plus 1,963 feet, 1,964 feet, and 2,218 feet, were used as the control parameters for computing the Theodore Roosevelt Reservoir capacity. The program can compute an area and capacity at elevation increments of 0.01- to 1.0-foot by linear interpolation between the given contour surface areas. The program begins by testing the initial capacity equation over successive intervals to ensure that the equation fits within an allowable error limit, which was set at 0.0000001 for Theodore Roosevelt Reservoir. This capacity equation is then used over the full range of intervals fitting within this allowable error limit. For the first interval at which the initial allowable error limit is exceeded, a new capacity equation (integrated from the basic area curve over that interval) tests the fit until it also exceeds the error limit. Thus, the capacity curve is defined by a series of curves, each fitting a certain region of data. Final area equations are derived by differentiating the capacity equations, which are of second order polynomial form:

$$y = a_1 + a_2 x + a_3 x^2$$

where:

y =capacity x = elevation above a reference base $a_1 =$ intercept a_2 and $a_3 =$ coefficients

Results of the 1995 Theodore Roosevelt Reservoir area and capacity computations are listed in tables 1 and 2 and plotted on figure 2. A set of 1995 area and capacity tables was developed for the 0.1-foot elevation increments (Reclamation). These tables are dated November 30, 1995. Computation results are listed in columns (4) and (5) of table 2. Column (2) in the table gives the original measured contour areas used in the original area and capacity computation, and column (3) gives the original capacity recomputed using ACAP. Both the original and 1995 area and capacity curves are plotted on figure 2. As of April 1995, at the top of the existing spillway at elevation 2,136 feet, the surface area was 19,075 acres and the capacity was 1,348,314 acre-feet.

RESERVOIR SEDIMENT ANALYSES

Since Theodore Roosevelt Reservoir storage began in 1909, the computed volume difference between the original and 1995 capacities is 182,185 acre-feet below top of existing active conservation capacity elevation 2,136 feet. The average annual rate of lost capacity was 2,121 acre-feet per year, or 0.372 acre-foot per square mile per year from the sediment contributing drainage area of 5,709 square miles. The storage difference in terms of percent of original storage capacity was 88 percent.

Sediment calculations in the 1995 study were based on the difference between the original and 1995 measured reservoir capacities. This method would account for all sediment accumulation during the 85.9 years of reservoir operation, but the calculations are only as accurate as the two surveys. Based on the obvious differences in mapping accuracy for the 1995 and 1915 contour maps of the Roosevelt Lake area, the surface areas and capacities for the range of operational elevations at the lake for 1995 should be compared to earlier estimates of sedimentation at Roosevelt Lake. Table 1 contains the Theodore Roosevelt Reservoir storage calculations with differences based on the 1995 resurvey and compared to the 1981 survey. Although similar, the estimates for average annual loss in capacity to sedimentation are sufficiently different to warrant consideration in future planning and storage allocation activities.

Because future reservoir surveys will be compared to the 1995 reservoir topography, the capacity and sediment distributions computed from these data are important. For computing estimates of future sedimentation rates, the data generated from the 1981 survey may be more applicable than the estimates based upon comparison of the 1995 survey and the original topography. The 1981 survey and analysis has the advantage of adjustments to a common map base between surveys (original and 1981). In contrast, the analysis for the 1995 survey relied upon comparison of two different map bases of apparently dissimilar accuracies. The intended use of the data should be considered when choosing the sedimentation analysis results for a particular application.

Comparative analyses for all range lines established in 1909 and surveyed in 1995 are presented on figures 3 through 45. The 1995 traces for these comparisons are from the 1995 topographic map developed from the recent bathymetric survey and aerial photogrammetry. These range lines were established by locating the endpoint coordinates for each range line within the topographic map developed from the 1995 survey and producing a range line profile from the map product. The 1909 (original) cross section shape of each range line was developed from the original topography for Roosevelt Lake.

These comparative plots reveal significant differences in the above water portion of the range lines between 1909 and 1995. These differences relate to the differences in techniques used to generate these maps as well as the related map accuracy. In some cases, the original profiles do not extend to the present-day endpoints. For these profiles, only the available portion of the original is shown on the comparative plot.

Profiles of the Salt River and Tonto Creek portions of the reservoir are shown on figures 46 and 47. These profiles were developed from the thalweg elevations (original and 1995) for each range line along the two arms of the lake. Distances between the range lines were established from the 1995 topographic map of Roosevelt Lake.

The coordinates and elevations for each sedimentation survey range line endpoint at Theodore Roosevelt reservoir are shown in table 3. Future reservoir surveys will likely be conducted using these data to produce comparative plots of these range lines to monitor sedimentation within the reservoir area.

REFERENCES

- American Society of Civil Engineers, *Nomenclature for Hydraulics*, ASCE Headquarters, New York, 1962.
- Blanton, J.O. III, Procedures for Monitoring Reservoir Sedimentation: Technical Guideline for Bureau of Reclamation, Denver Office, Denver, CO, October 1982.
- Bureau of Reclamation, Surface Water Branch, ACAP85 User's Manual, Technical Service Center, Denver, Colorado, 1985.
- Bureau of Reclamation, Guide for Preparation of Standing Operating Procedures for Bureau of Reclamation Dams and Reservoirs, U.S. Government Printing Office, Denver, CO, 1987a.
- Bureau of Reclamation, *Design of Small Dams*, U.S. Government Printing Office, Denver, CO, 1987b.

Corps of Engineers, Application of Differential Global Positioning System for Hydrographic Survey and Dredge Positioning, ETL 1110-7-5 (FR), Department of the Army, Washington,

DC, March 1991.

Environmental Systems Research Institute, Inc., ARC Command References, 1992.

Lara, J. M., Theodore Roosevelt Lake - 1981 Sedimentation Survey, Report REC-ERC-82-18, Bureau of Reclamation, Denver, CO, September 1982.

Table 1. - Reservoir sediment data summary (page 1 of 3).

RESERVOIR SEDIMENT DATA SUMMARY

Theodore	Roosevelt	Lake

						NAME OF RESERVOI	.R			-4b HEET NO.	
D	1. OWNER Salt River	Project			2. ST	REAM Salt Rive	г & То	nto Creek	3. STATE Arizona		
A	4. SEC 20, T4N, R12	E			5. NE.	AREST PO Globe	30 NW		6. COUNTRY Gila		
м	7. LAT 33° 33' 13" L	ONG 111° 26	5′33″		8. TO	P OF DAM ELEV. 2	218		9. SPILLWAY CREST	ELEV. 2214	
R E S E	10. STORAGE ALLOCATION	11.	ELEVATION OF E		12. ORIG SURFACE	INAL AREA, AC		ORIGINAL APACITY, AF	14. GROSS STORAGE ACRE PEET		DATE STORAGE BEGAN
RV	a. FLOOD CONTROL										
O I R	b. MULTIPLE USE				·						
	c. POWER						<u> </u>			May 1	.909
	d. WATER SUPPLY		2136	6.		17,826		1,522,200	1,522,200		
	e. IRRIGATION									16.DA OPERA	TE NORMAL TION BEGAN
	f. CONSERVATION										
	g. INACTIVE		·							May 1	9074
	17. LENGTH OF RESERV	OIR	26.7			MILES	AVG.	WIDTH OF RESERVOID	R 1.04		MILES
B A	18. TOTAL DRAINAGE A	REA	5,736		······································	SQ. MI.	22.	MEAN ANNUAL PRECIP	ITATION 21.0		INCHES
S I N	19. NET SEDIMENT CON	FRIBUTING A	REA	5,709	<u> </u>	SQ. MI.	23.	MEAN ANNUAL RUNOFF	2.39		INCHES
IN .	20. LENGTH 117		MI.	AV. WIDTH	50	MI.	24.	MEAN ANNUAL RUNOFF	726,678		ACFT.
	21. MAX. ELEV. 11,000			MIN. ELEV.	1929	FT.	25.	ANNUAL TEMP. MEAN	56.7 RANGE 37.7 to	76.6	
S U R V Ê Y	26. DATE OF SURVEY	27. PER. YRS.	28. ACCL. YRS.	29. TYP SUR	E OF VEY	30. NO. OF RANGES OR INTERVAL		31. SURFACE AREA, AC.	32. CAPACITY ACRE-FEET	33. C/I RATIO	AF/AF
D A T A	Gates Closed	0			(2)						
	Sep 1981	72.4	72.4			10-ft interv	al	17,785 17,337	1,530,499" 1,336,734		.11
	Apr 1995	13.5	85.9			5-ft interva	1	19,075	1,348,314"."		84
	26. DATE OF SURVEY	34. PERI ANNU		35. PER	IOD WATER	INFLOW, ACRE FEE	т	J	36. WATER INFLOW T	O DATE, AF	
		PREC	IP.	a. MEAN	ANN.	b. MAX. ANN.		c. TOTAL	a. MEAN ANN.	b. TOTAL	
	Sep 1981	21	.0	715	7,131	2,582,996	5	50,199,184	717,131	50,1	99,184
	Apr 1995	22	.5	1,03	95,485	2,744,900	1	14,496,790	752,279	64,6	95,974
	26. DATE OF SURVEY	37. PERIC	DD CAPACI	TTY LOSS, AC	RE-FEET			38. TOTAL SEDIME	VT DEPOSITS TO DATE, AF		
		a. TOTAL		b. AV. A	NN .	c. /MI. ¹ -YR.		a. TOTAL	b. AV. ANNUAL	c. /MI	-YR.
	Sep 1981	193,	765	2,	676	0.469		193,765	2,676	0.	469
	Apr 1995	see foot	tnote 8	see foo	otnote 8	see footnote	2 8	182,185"	2,121"	0.	372"
	26. DATE OF SURVEY	39. AV. D (#/PT')	RY WT.	40. SED.	DEP. TONS	/MIYR.		41. STORAGE LOSS,	PCT.	42. SED. INFLOW	. PPM
				a. PERIO	D	b. TOTAL TO		a. AV.	b. TOTAL TO	a.	ь.
		······				DATE		ANNUAL	DATE	PER.	тот.
	Sep 1981	49.		5	04	504		0.175	12.67	3,054	3,050
	Apr 1995	N/1	A	N	/A	N/A		0.139"	11.90*	N/A	N/A
	×										

SURVEY	234-	206 -	166 -	126 -	86 -	36 -	1						T	1	
	206	166	126	86	36 NT OF TOTAL	crest	T LOCATED	WITHI	N DE	PTH DES	IGNATION				
April	<u> </u>				·	T				ı					
1995	1.5	15.0	26.6	27.3	28.7	0.9									
6. NATE OF URVEY	0-10	H DESIGNATIO 10- 20- 20 30		4 0- 50	50- 60	60- 70	70- 80	80- 90	Τ	90- 100	100- 105	105- 110	110- 115	115- 120	120- 125
pril	· · · · ·			PERCE	NT OF TOTAL	SEDIMENT	LOCATED	WITHIN	N REA	ACH DES:	IGNATION				
.995	N/A														
5. RANGE	IN RESERV	OIR OPERATIO	N ⁹												
WATER Y	EAR	MAX. ELEV.	MIN	. ELEV.	INFLOW	AF U	WATER	YEAR	<u> </u>	MAX.	ELEV		. ELEV.	TNE	LOW, AF
1910	,	2025		1947	454,3		195				1.43		09.51		36,986
1911	.	2069		1963	800,2		195				5.59		87.03		08,666
1912		2079		2051	548,0	27	195	4		209	3.11	20	77.69		91,741
1913		2069		2033	401,8	57	195	5		2083	2.93	20	37.40		19,302
1914		2044		2012	530,7	70	195	6		2044		1	72.18		8,771
1915		2127		2012	1,782,	758	195			2032		19	86.87	1	1,741
1916		2127		2106	2,582,	996	195	8		2075		1	00.58		9,302
1917		2127		2092	816,5	05	195	9		2076	5.75	20	32.20	1	4,771
1918		2103		2045	394,5	12	196	0		2119	.58	20	77.02	73	7,340
1919		2073		2036	991,2	74	196	1		2103	.50	20	74.60	21	2,370
1920		2127		2072	1,890,	016	196	2		2107	.83	20	78.68	76	7,021
1921		2100	:	2068	546,2	83	196	3		2091	90	20	57.84	44	6,036
1922		2103		2072	688,4	88	196	4		2068	1.13	20	34.54	29	2,497
1923		2080	:	2052	612,4	31	196	5		2132	.46	20	48.61	1,4	07,435
1924		2105		2053	903,9	37	196	6	Í	2135	. 47	21	23.45	75	6,767
1925		2066		1990	328,0	67	196	7		2125	.29	21	05.35	38	3,794
1926		2075	:	1990 -	783,8	87	196	8		2135	. 52	21	14.60	1,0	06,598
1927		2093		2038	959,2	92	196	9		2130	. 92	21	14.88	61	7,967
1928		2068		2007	317,2	79	197	0		2114	.82	20	80.46	34	9,271
1929		2005	1	1962	471,8	74	197	1		2096	. 13	20	58.54	47	1,764
1930		1995	3	1952	397,9	97	197	2		2098	.50	203	32.45	74	8,406
1931		2019	1	952	639,1	82	197.	3		2135	. 88	209	96.68	1,6	42,102
1932		2114	1 3	968	1,394,	960	197-	4		2118	.73	208	81.88	26	6,586
1933		2099	2	2076	473,8	97	197	5		2112	.73	208	36.85	62	1,110
1934		2076	1	.975	263,6	24	197	6		2104	. 49	208	32.44	41	9,679
1935		2071	1 2	.962	760,1	01	197	7		2084	.24	201	15.12	21	1,884
1936		2070	2	026	689,11	37	197	8		2132	.46	202	4.05	2,0	37,484
1937		2107		8038	1,018,1	347	1975	Ð		2135	.95	211	7.70	1,7	43,995
1938		2082	2	:007	398,79	97	1980)		2136	.83	211	.8.75	1,7	29,915
1939		2008		.957	381,84		198	L		2120	.81	208	8.98	34	0,740
1940		1991	1	955	309,65	11	1982	2		2128	.45	209	3.86	76	5,700
1941		2136		955	2,267,5		1983	3		2135	. 92	212	0.63	1,6	50,800
1942		2131		117	609,21	11	1984	1	1	2131	. 41	211	.3.10	885	9,400
1943		2125		102	595,10		1985	5		2135	. 98	211	8.85	1,64	0,700
1944		2107	1	086	427,66	11	1986	ŝ		2135	.74	211	5.33	68	8,200
1945		2098		081	349,10		1987			2135	. 88	211	7.55	804	1,570
1946		2073.49	1	36.65	396,12		1988	3		2133	. 35	211	8.50	775	5,900
1947	ļ	2032.01		54.95	312,38		1989			2125	45	209	0.58	296	,080
1948		2030.58	1	6.54	464,16	ll l	1990			2092		206	5.92	220	,230
1949		2069.22		3.95	815,77		1991			2134	.24	207	4.20	1,24	9,300
1950		2060.47		0.93	205,44	H	1992		1	2123	65	210	5.51	1,05	5,100
1951		2025.28	1 197	1.08	367,41	6	1993		1	2139	34	210	2.09	1 2 74	4,900

Table 1. - Reservoir sediment data summary (page 2 of 3).

Table 1. - Reservoir sediment data summary (page 3 of 3).

WATER YEAR	MAX. ELEV.	MIN. ELEV.	INFLOW	, AF	WATER YEAR	L M	AX. ELEV.	MIN. ELEV.	INFLOW, A
1994	2112.82	2087.43	450,0	010					
1995	2130.07	2099.07	1,259,	900					
ELEVATION	- AREA - CAPACITY	y data		<u> I</u>					
ELEV.	AREA	CAP.	ELEV.	ARE	ł	CAP.	ELEV.	AREA	CAP.
1995	Survey								
1965	157	80							
1970	551	1,850							
1980	927	9,120							
1990	1,211	19,850							
2000	2,198	36,147							
2010	3,440	64,357							
2020	4,273	103,035							
2030	4,954	149,442							
2040	5,581	202,025							
2050	6,714	262,987							
2060	7,979	336,245			1				
2070	9,396	423,232							
2080	10,769	524,050							
2090	12,194	638,669							
2100	13,579	767,887							
2110	14,831	909,867							
2120	16,356	1,065,544					2 2 2		
2130	18,000	1,237,049							
2140	19,746	1,425,957							
2150	21,351	1,631,622							
2160	22,732	1,852,129							
2170	24,163	2,086,387							
2180	25,753	2,336,067							
2190	27,402	2,601,879						1	
2200	29,053	2,884,154							
2210	30,614	3,182,584							
2220	32,221	3,496,484			1				

47. REMARKS AND REFERENCES

= Modification to Roosevelt Dam completed in 1995 raised the dam and spillway elevations. Original dam elevation was 2142 and spillway ŧ elevation was 2136. ² = Storage allocation breakdown unknown.

¹ = Modification to Roosevelt Dam in 1995 raised the water supply allocation to elevation 2218 feet and the capacity to 3,432,408 acre-feet.

* = Date of project operation. Date of normal dam operation unavailable.

⁵ = Salt River Arm = 15.8 miles; Tonto Creek Arm = 10.9 miles.

^a = 541t River Ann - 15.5 miles, fonce offer Ann - 16.5 miles.
^b = 1909 area and capacity values recomputed in 1981 by current methods for comparison with 1995 area and capacity values to compute sediment deposition.
^c = Capacity in 1995 at elevation 2136 recomputed using map developed from 1995 surveys.

= capacity in 1995 at elevation 2156 recomputed using map developed from 1995 surveys.
* = The increased intensity of bathymetry survey, along with increased map detail, results in lower sediment deposition estimates for 1995
when compared to the 1981 survey results.

* = Inflow, maximum, and minimum elevation data from Salt River Project files.

48. AGENCY MAKING SURVEY Bureau of Reclamation 49. AGENCY SUPPLYING DATA Bureau of Reclamation

DATE. April 1996

2220 2210 2200 2190 2180 2170 2160 2150			32,221 30,614 29,053 27,402 25,753	3,496,484 3,182,584 2,884,154 2,601,879	(acre-ft)	
2200 2190 2180 2170 2160			29,053 27,402	2,884,154		
2190 2180 2170 2160			27,402			
2190 2180 2170 2160			27,402			
2180 2170 2160				2,001,015		
2170 2160			25,753			
2160				2,336,067		
			24,163	2,086,387		
2150		-	22,732	1,852,129		
			21,351	1,631,622		
2140			19,746	1,425,957		
2136	17,785	1,530,499	19,075	1,348,314	182,185	100.0
2130	17,203	1,425,512	18,000	1,237,049	188,463	103.5
2120	16,177	1,258,547	16,356	1,065,544	193,003	105.9
2110	15,095	1,102,215	14,831	909,867	192,348	105.6
2100	14,140	956,455	13,579	767,887	188,568	103.5
2090	13,247	819,272	12,194	638,669	180,603	99.1
2080	11,939	693,315	10,769	524,050	169,265	92.9
2070	10,638	580,590	9,396	423,232	157,358	86.4
2060	9,482	479,928	7,979	336,245	143,683	78.9
2050	8,262	391,207	6,714	262,987	128,220	70.4
2040	7,106	314,623	5,581	202,025	112,598	61.8
2030	6,216	248,009	4,954	149,442	98,567	54.1
2020	5,286	190,334	4,273	103,035	87,299	47.9
2010	4,264	142,903	3,440	64,357	78,546	43.1
2000	3,544	103,787	2,198	36,147	67,640	37.1
1990	2,744	72,347	1,211	19,850	52,497	28.8
1980	1,985	48,867	927	9,120	39,747	21.8
1970	1,428	31,935	551	1,850	30,085	16.5
1960	1,020	19,743			19,743	10.8
1950	677	11,328			11,328	6.2
1940	419	5,893			5,893	3.2
1930	227	2,735			2,735	1.5
1920	117	1,059			1,059	0.6
1910	52	211			211	0.0
1910	52 0	0			0	0.1

Table 2. - Summary of 1995 survey results and sediment distribution.

Explanation of columns:

(1) Elevation of reservoir water surface.
(2) Original reservoir surface area. Roosevelt Dam was modified, which raised the pool elevation to 2218.

(3) Original reservoir capacity. The modification increased the capacity to 3,432,408 acre-feet.

(4) Reservoir surface area determined from 1995 survey.

(5) Reservoir capacity from 1995 survey.
(6) Accumulated sediment volume = column (3) - column (5).
(7) Measured sediment expressed as percentage of total measured sediment (188,463 acre-ft).

Table 3. - Roosevelt Dam range line bank stations (page 1 of 2).

1 La 1 R 2 La 2 R 3 La 3 R	ooking Downstream eft Bank tight Bank eft Bank tight Bank	Bank Station 1A 90C	NORTHING			CENTRAL ZONE (US feet)	
1 R 2 Le 2 R 3 Le 3 R	light Bank eft Bank			EASTING		NORTHING	EASTING
2 Lo 2 R 3 Lo 3 R	eft Bank	<u> </u>	29868.626	60414.562		972569.798	730410.915
2 R 3 L 3 R			30509.433	60040.744	2136.28	973208.396	730033.533
3 Le 3 R	light Bank	1B	30139.417	60782.903	2136.6	972842.629	730777.670
3 R	eft Bank	90B 1C	30764.853 30216.711	60440.896 61206.644	2144.48 2137.86	973466.038 972922.305	730432.182
	light Bank	90A	31094.811	60708.438	2137.88	973797.457	731200.910 730697.819
4 Le	eft Bank	2	31494.845	63287.103	2132.49	974211.999	733273.832
	light Bank	- 55A	35027.557	63338.136	2146.4	977744.462	733304.899
	eft Bank	4A	29863.893	65894.834	2131.72	972596.027	735890.381
5 R	light Bank	54	33971.353	66262.610	2152.69	976704.941	736234.895
6 Le	eft Bank	5	30529.034	68587.052	2136.62	973276.277	738578.432
	light Bank	53	32759.592	68609.173	2152.21	975506.621	738587.948
	eft Bank	6	29351.071	70211.233	2137.1	972107.669	740209.021
	light Bank	50B	41633.824	70267.596	2170.63	984388.874	740195.983
	eft Bank	6A ·	28062.925	72658.359	2141.93	970833.544	742663.053
	light Bank	50A	40346.408	72722.392	2142.73	983115.522	742657.679
	eft Bank	8	28299.791	76747.093	2139	971093.474	746749.827
	light Bank	49 9A	39419.342 20578.61.4	77208.704	2135.65	982213.943	747148.547
	eft Bank light Bank	9A 46	29578.614 34776.175	80727.976 80780.304	2146.17 2135.97	972394.593 977591. 6 59	750722.880 750745.836
	eft Bank	10	32633.100	81999.315	2155.87	975455.797	751976.770
	light Bank	45B	63652.027	82024.755	2138.01	1006470.154	751826.962
	eft Bank	18	24741.857	86504.938	2152.3	967591.208	756526.290
	ight Bank	43B	34125.667	86568.054	2129.49	976973.949	756536.382
13 Le	eft Bank	20	23660.938	90435.051	2152.43	966532.657	760461.913
13 Ri	ight Bank	42B	32947.009	90646.086	2139.39	975818.509	760620.453
14 Le	eft Bank	22	23780.458	94071.163	2151.98	966672.701	764096.797
14 Ri	ight Bank	40B	32119.804	94208.343	2146.35	975011.555	764186.842
	eft Bank	24	21664.571	97712.843	2151.26	964577.710	767749.877
	ight Bank	39A	29952.502	98479.852	2139.22	972868.714	768469.947
	eft Bank	25	22362.295	100534.100	2147.2	965291.267	770566.764
	ight Bank	38A	28671.271	100596.134	2134.94	971599.634	770593.145
	eft Bank	26	22909.258	103230.472	2153.2	965853.613	773258.830
	ight Bank eft Bank	37A 27	27394.328 22802.779	103298.589 106610.933	2129.36 2134.88	970338.153 965766.015	773302.404
	ight Bank	36A	28555.258	106626.875	2134.00	971517.710	776640.185 776623.625
	eft Bank	31	19778.980	109790.050	2176.28	962760.636	779835.902
	ight Bank	35C	27261.120	111325.890	2241.54	970250.316	781329.238
	eft Bank	32D	17712.240	113862.220	2175.74	960717.217	783919.129
	ight Bank	34	24944.650	113391.420	2228.96	967945.868	783407.541
21 Le	eft Bank	32E	18511.260	115665.360	2166.7	961526.302	785717.481
21 Ri	ight Bank	33B	24423.420	114725.600	2217.19	967432.254	784744.463
22 Le	eft Bank	32F	16382.560	116894.130	2224.83	959404.868	786958.091
	ight Bank	32C	23335.320	118320.290	2263.21	966364.628	788344.754
	eft Bank	32F	16382.560	116894.130	2224.83	959404.868	786958.091
	ight Bank	32H	15678.470	120895.880	2163.18	958723.493	790963.211
	eft Bank	32J	12512.570	118818.850	2195.89	955548.340	788904.382
	ight Bank	32K	13820.670	121527.740	2188.43	956869.545	791605.470
	eft Bank ight Bank	56 86A	35086.929 35242.369	63018.822 57371.857	2144.92 2130.95	977802.021 977925.535	732985.298 727338.313
	eft Bank	58C	38780.910	63408.890	2137.56	981497.406	733357.813
	ight Bank	85A	39703.358	54404.420	2142.85	982369.081	724346.124
	eft Bank	58B	41737.573	64305.501	2142.03	984458.924	734234.208
	ight Bank	84	42091.377	52445.657	2125.32	984745.671	722374.167
	eft Bank	60	46432.254	58616.916	2134.84	989120.753	728519.964
	ight Bank	83	46596.630	48262.553	2127.44	989226.606	718166.246
	eft Bank	63	52916.379	54881.464	2128.47	995582.789	724748.447
	ight Bank	79A	53062.505	47385.625	2129.91	995686.545	717252.922
35 Le	aft Bank	65	56790.589	50587.953	2127.17	999432.134	720433.701
	ight Bank	79	53464.514	47120.942	2151.8	996085.758	716986.638
	eft Bank	68	60623.620	43888.384	2151.73	1003226.753	713713.495
	ght Bank	77A	53647.029	43840.019	2138.12	996250.949	713704.552
37 Le	ift Bank	69	62181.145	41847.655	2157.73	1004772.512	711664.277

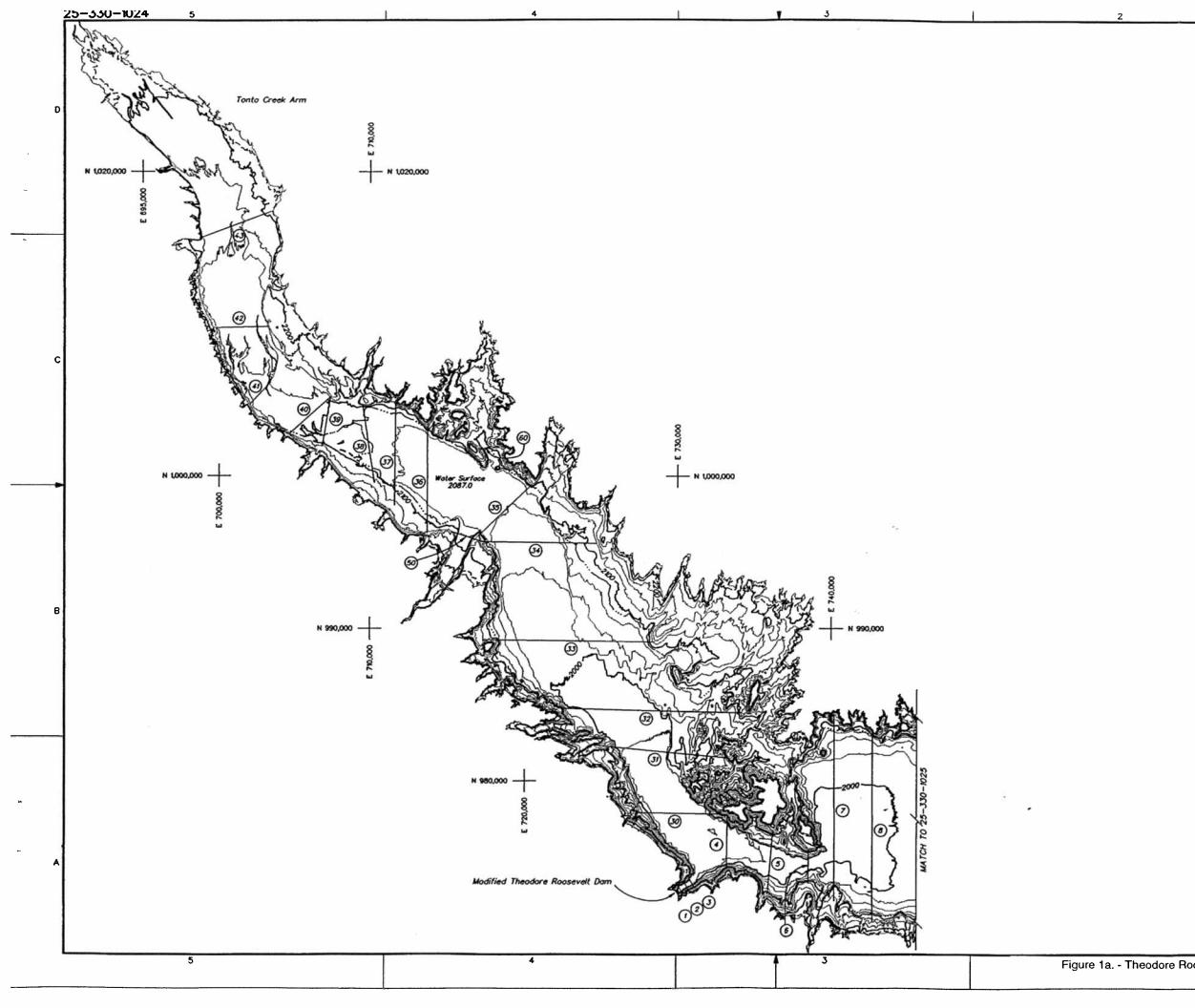
-

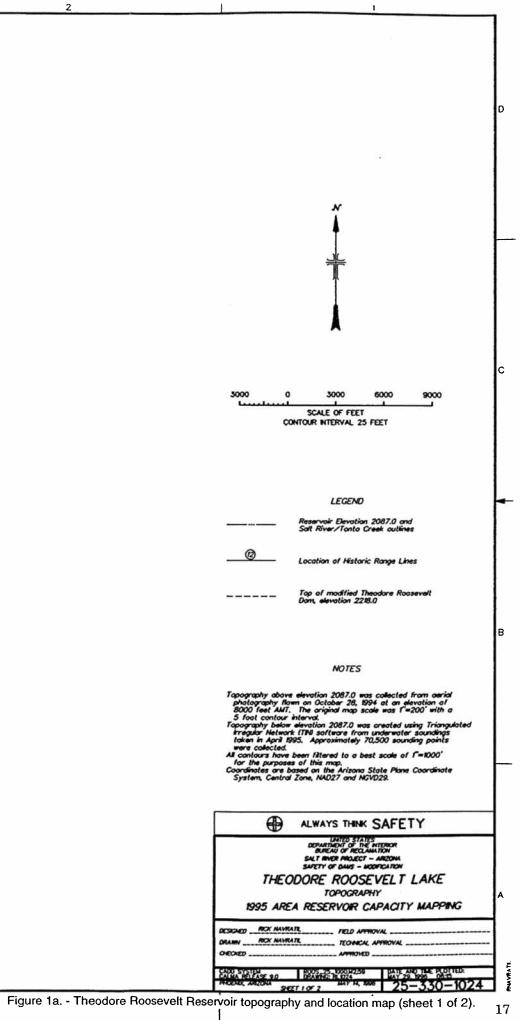
-

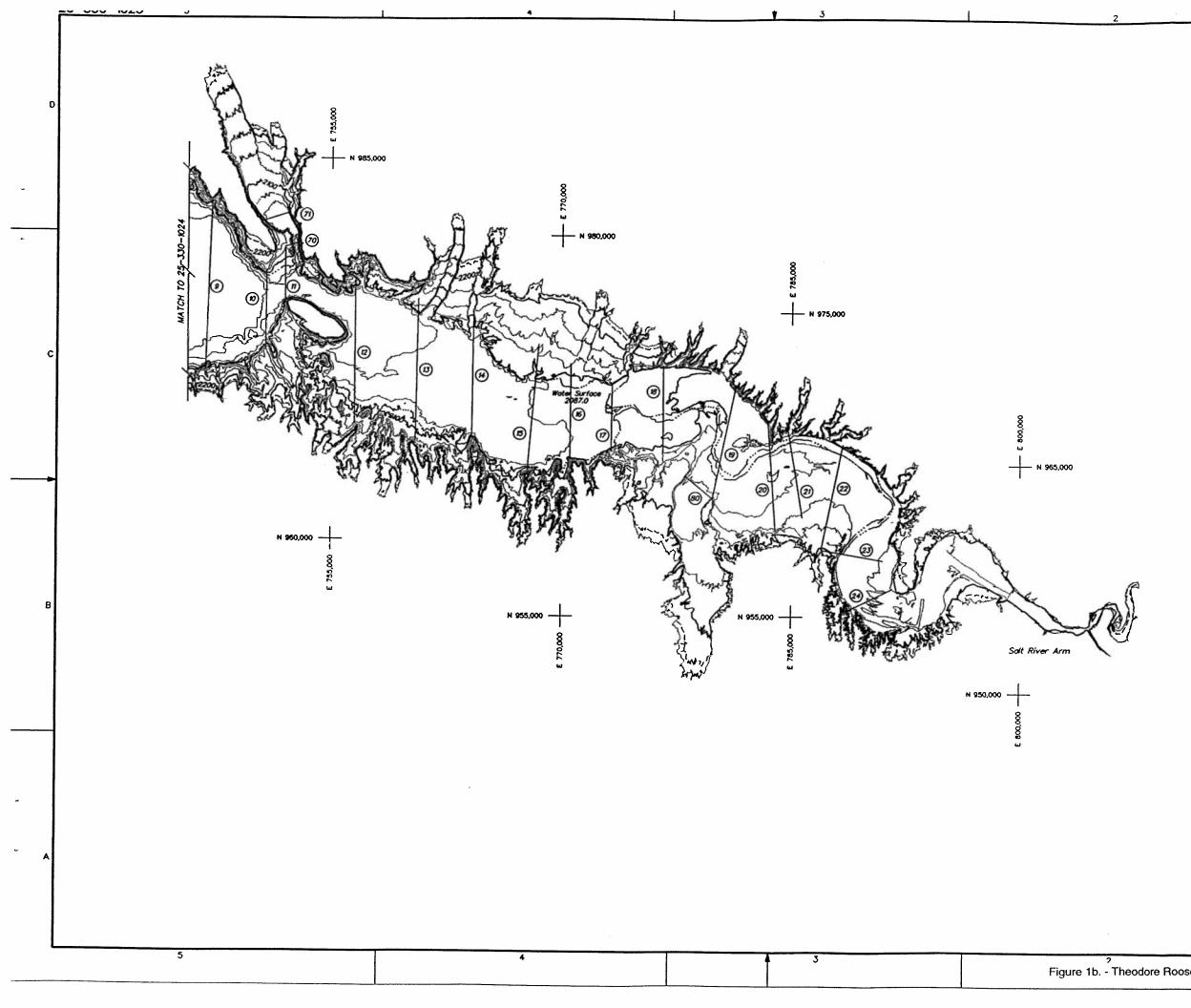
....

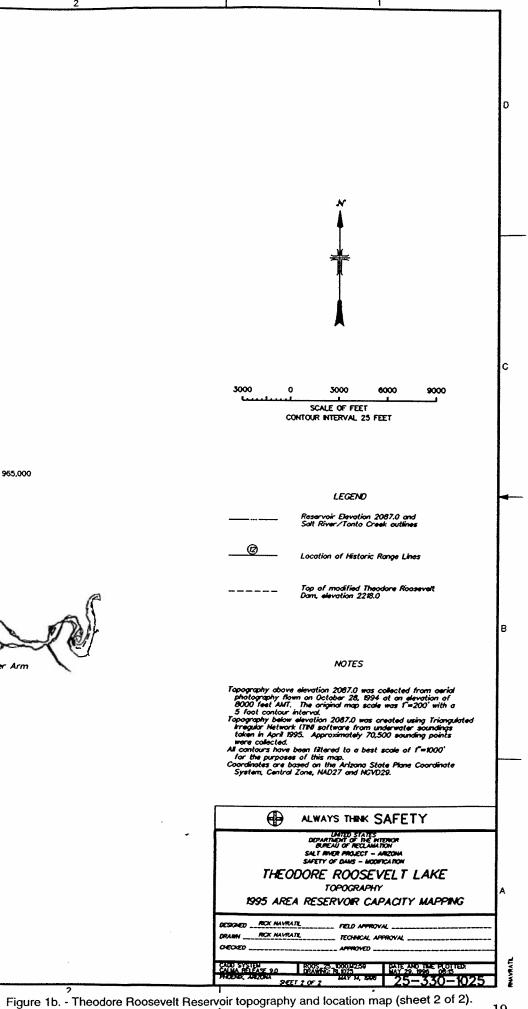
Table 3. - Roosevelt Dam range line bank stations (page 2 of 2).

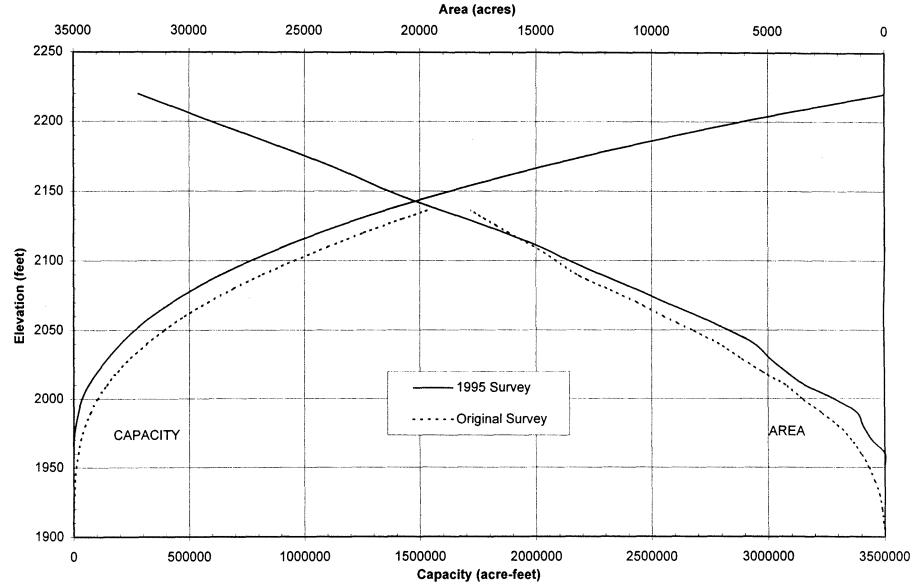
Range Lin	ne Looking Downstream	Name of Bank Station	FROM 1981 SURVEY LOCAL SYSTEM Drwg. K-653-104.1, 8/81 NORTHING	EASTING	Elevation (feet)	FROM 1995 G.P.S. SURVEY AZ ST PLN COORD. NAD27 CENTRAL ZONE (US feet) NORTHING	EASTING
37	Right Bank	76A	55482.876	41756.386	2134.05	998074.745	711610.864
38	Left Bank	70	62133.710	39703.218	2164.51	1004712.521	709519.188
38	Right Bank	75C	56951.735	40439.407	2139.48	999535.940	710285.787
39	Left Bank	71B	62627.102	37609.240	2137.81	1005194.456	707423.987
39	Right Bank	75	59367.075	37050.772	2136.56	1001931.769	706884.021
40	Left Bank	71B	62627.102	37609.240	2137.81	1005194.456	707423.987
40	Right Bank	74	60244.568	34873.547	2133.38	1002796.828	704702.170
41	Left Bank	72	63589.040	33613.170		1006133.671	703423.089
41	Right Bank	73	62162.500	32203.820		1004699.386	702022.013
42	Left Bank	72B	67272.880	33516.780	2188.16	1009816.407	703305.902
42	Right Bank	72E	67220.580	30012.350	2167.91	1009744.316	699802.300
43	Left Bank	72J	74830.830	33668.060	2207.02	1017374.063	703414.460
43	Right Bank	72H	73086.250	28940.930	2240.27	1015603.042	698697.904
60	Left Bank	66D	59334.876	47949.102	2145.08	1001961,146	717780.877
60	Right Bank	66C	59129.592	47266.743	2144.15	1001752.038	717099.782
70	Left Bank	45C	36622.358	82915.440	2143.62	979449.624	752870.218
70	Right Bank	45B	63652.027	82024.755	2138.01	1006470.154	751826.962
71	Left Bank	45E	38613.574	82355.559	2137.06	981437.375	752299.172
71	Right Bank	45D	38033.331	80523.783	2185.72	980846.871	750470.953
80	Left Bank	30B	21302.860	107993.620	2183.7	964274.136	778031.136
80	Right Bank	31	19778.980	109790.050	2176.28	962760.636	779835.902

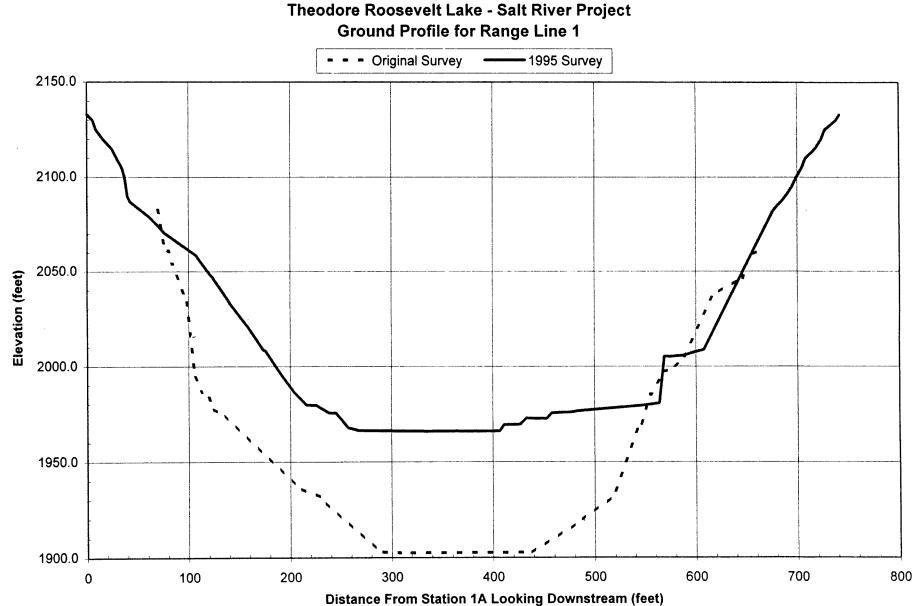

Note:


The 1981 local coordinates were converted into Arizona state plane coordinates, NAD27 Central Zone.


The bold coordinates from the 1995 GPS survey were used to correlate the state plane coordinates to the local coordinates.


•

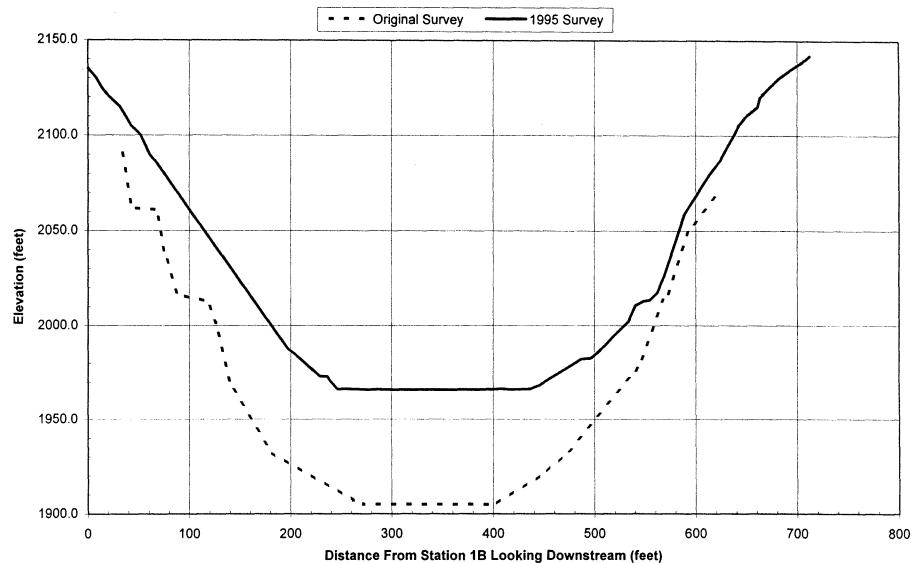

.


Area-Capacity Curves for Theodore Roosevelt Reservoir

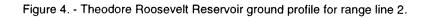
5

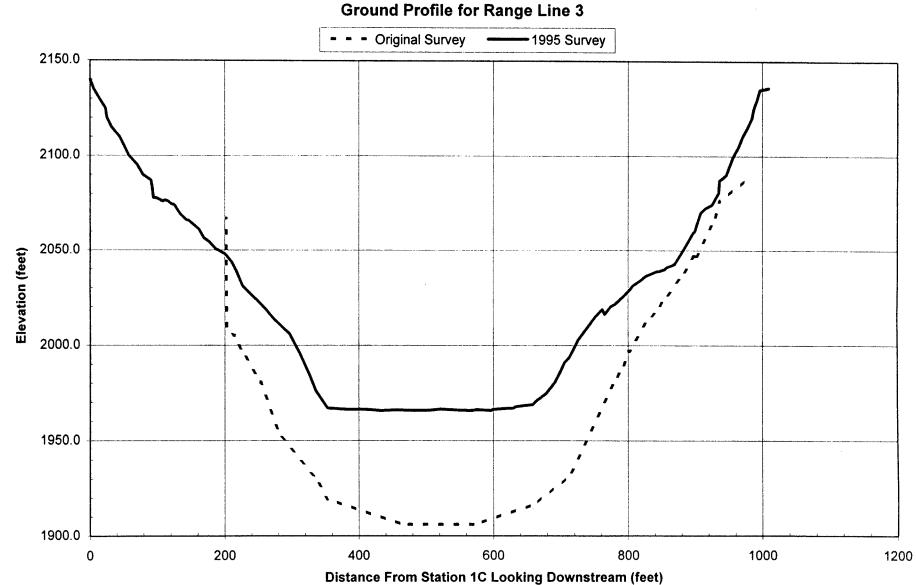
ι

21


ŝ

1

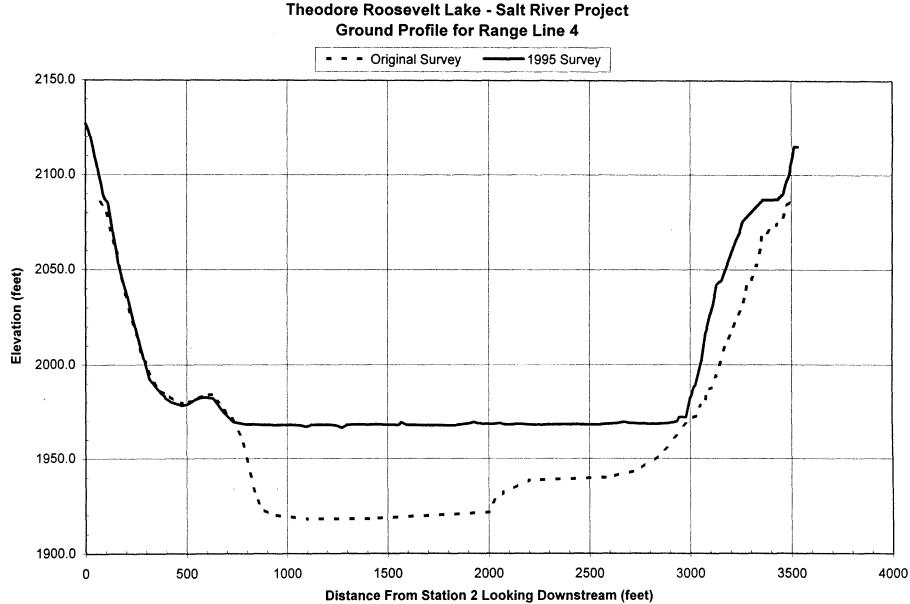

1


*

Theodore Roosevelt Lake - Salt River Project Ground Profile for Range Line 2

t

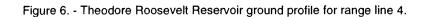
3


I

Theodore Roosevelt Lake - Salt River Project

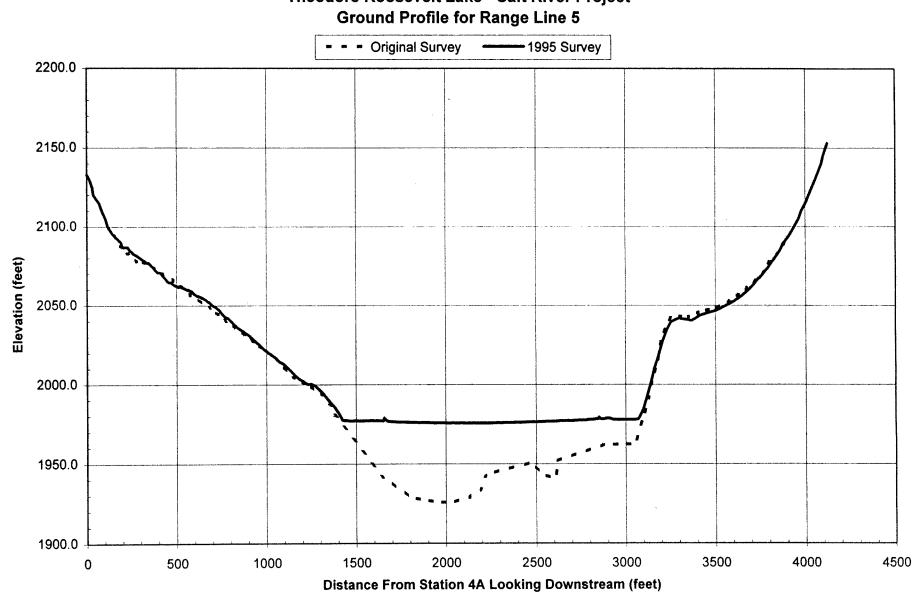
Figure 5. - Theodore Roosevelt Reservoir ground profile for range line 3.

1


4

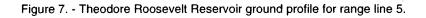
ł

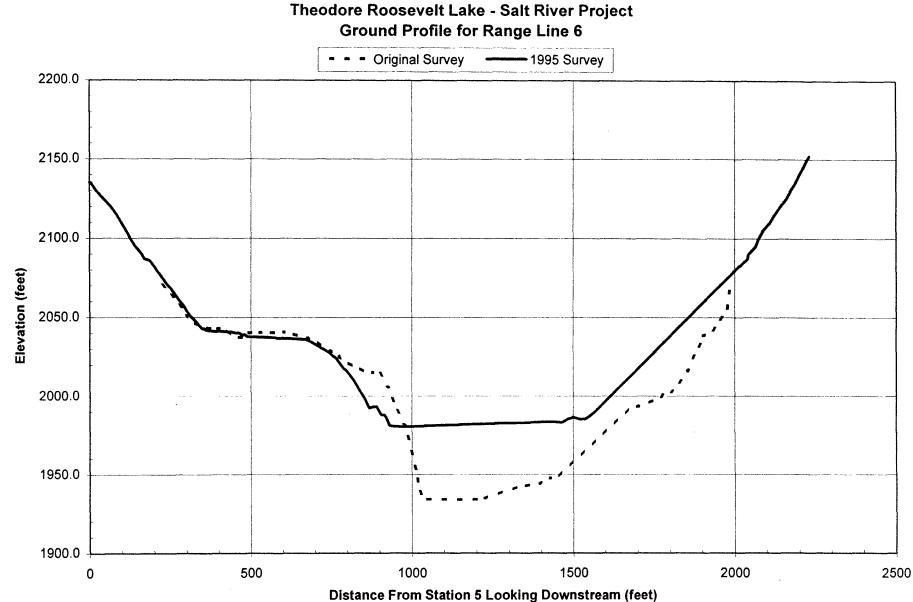
4


\$

25

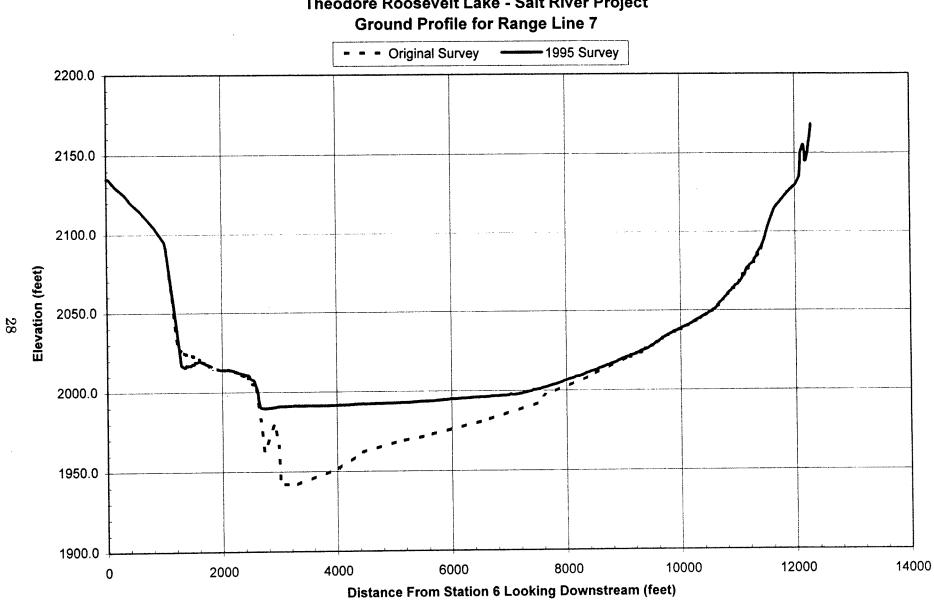
1


ŝ

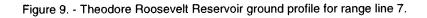


3

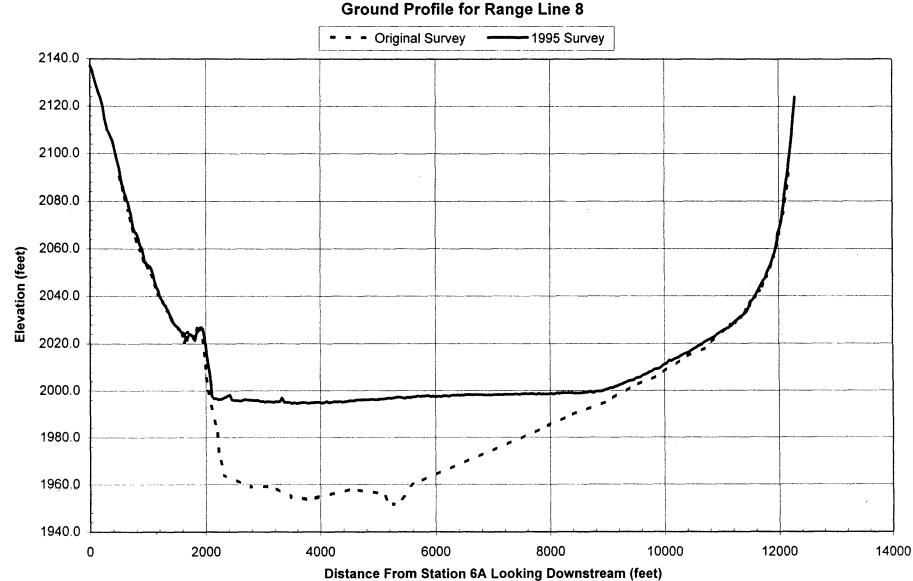

ł


Theodore Roosevelt Lake - Salt River Project

*

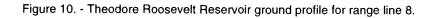


ŧ.


.

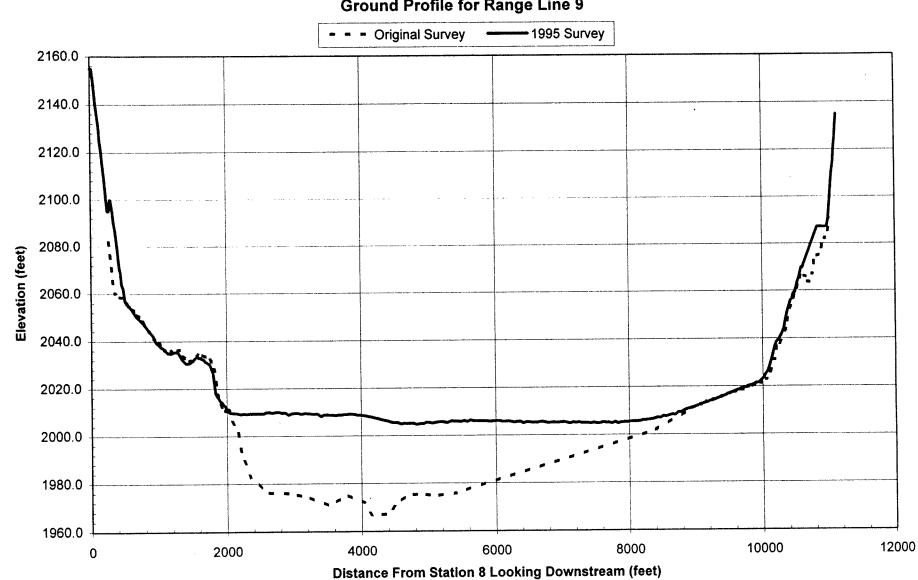
Theodore Roosevelt Lake - Salt River Project

r


ŧ

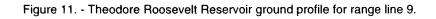
Theodore Roosevelt Lake - Salt River Project Ground Profile for Range Line 8

3

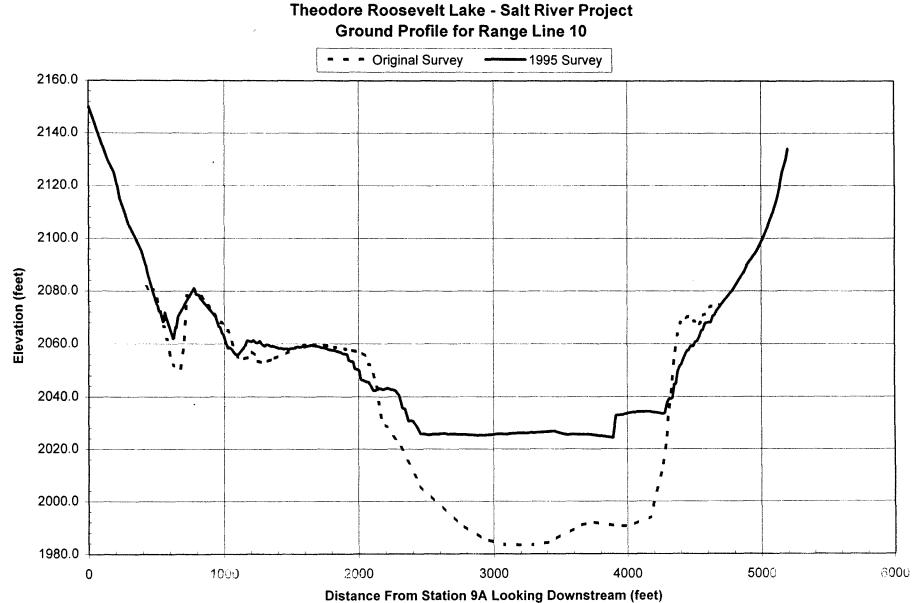

F

.

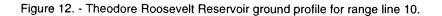
29


¥.

)


ŧ

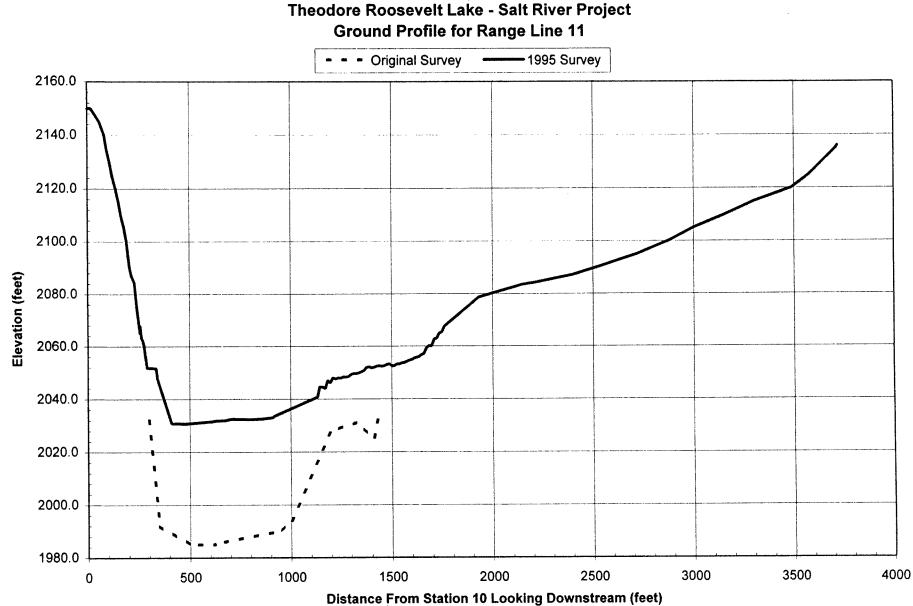
Theodore Roosevelt Lake - Salt River Project Ground Profile for Range Line 9



۲

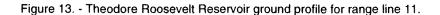
t

1

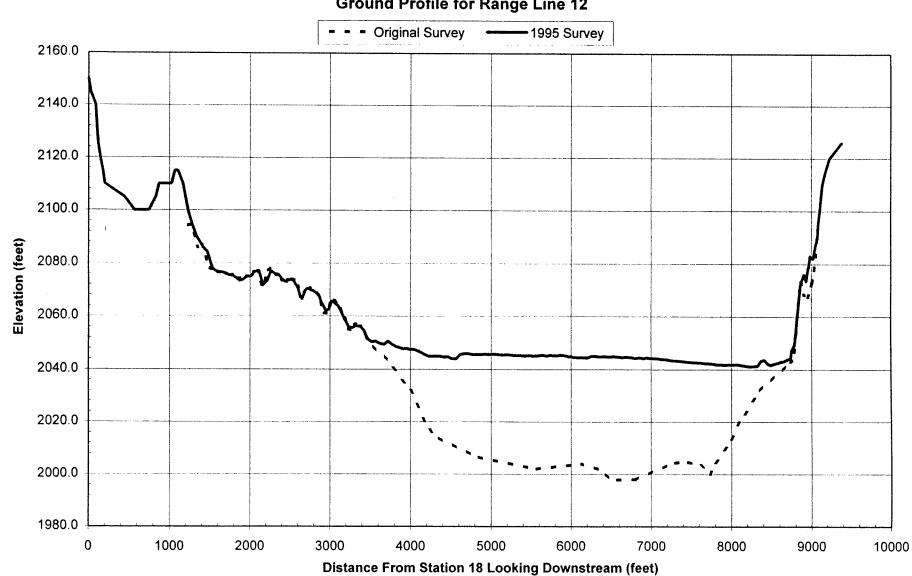


.

31


\$

Ţ


,

ŧ

t

۲

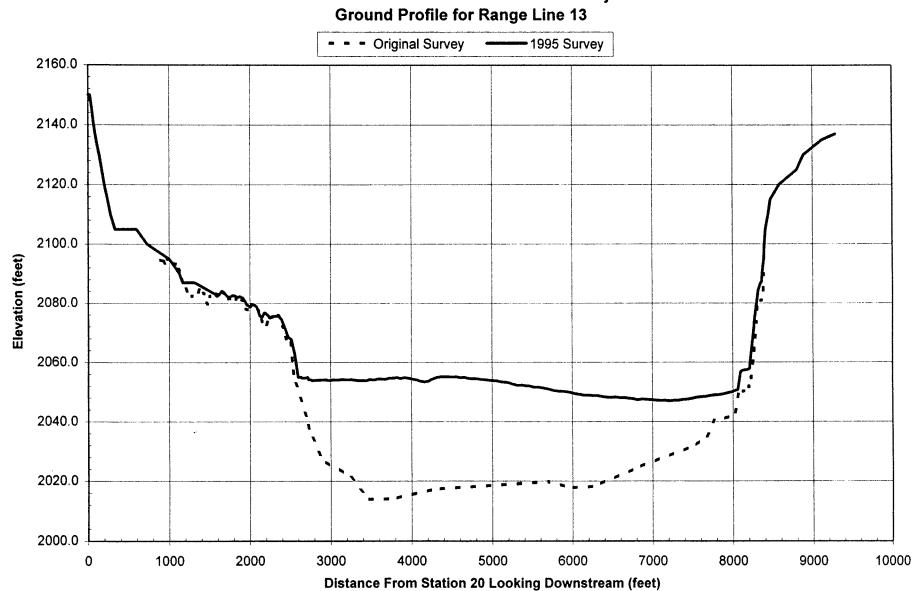
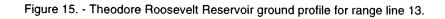
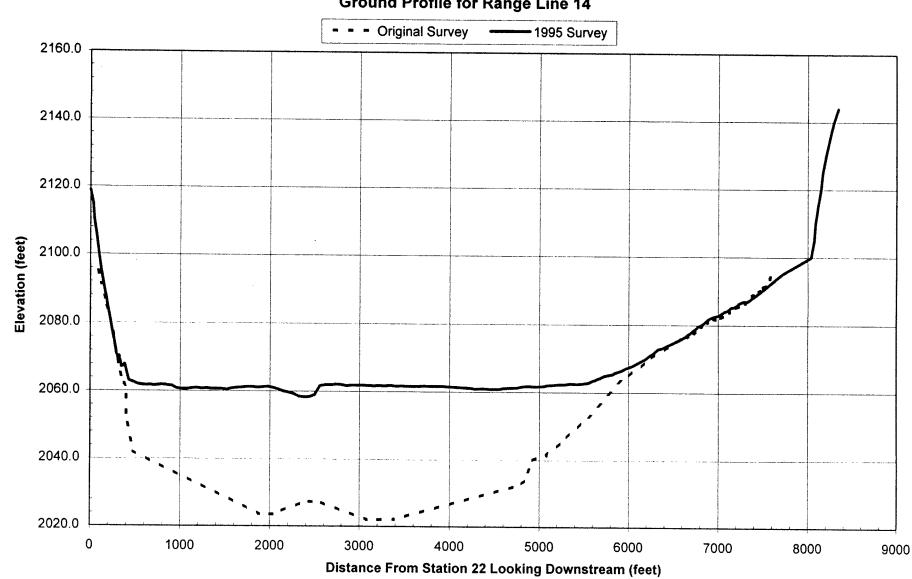

1

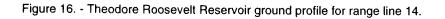
Figure 14. - Theodore Roosevelt Reservoir ground profile for range line 12.

33


3

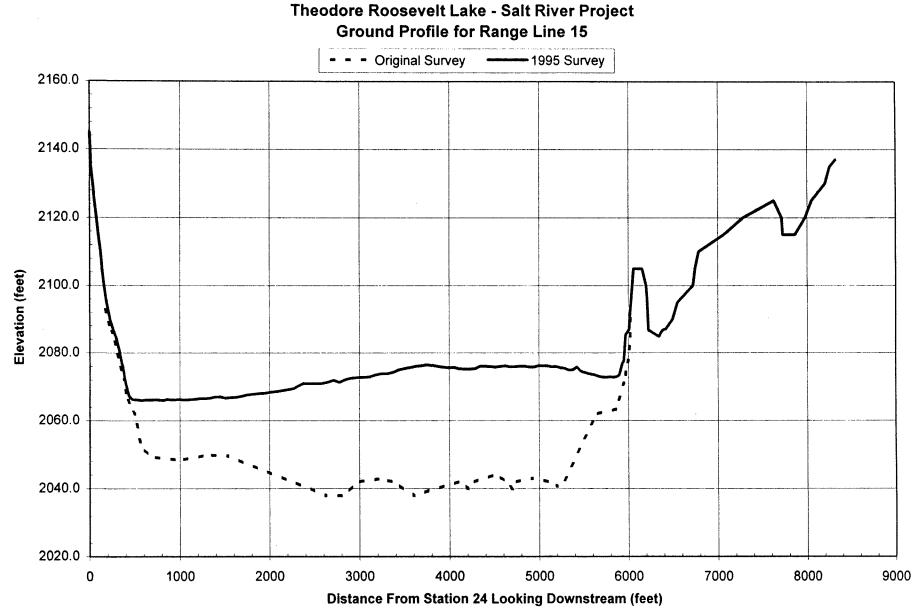
ŧ.


.

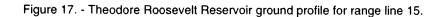

۲.

1

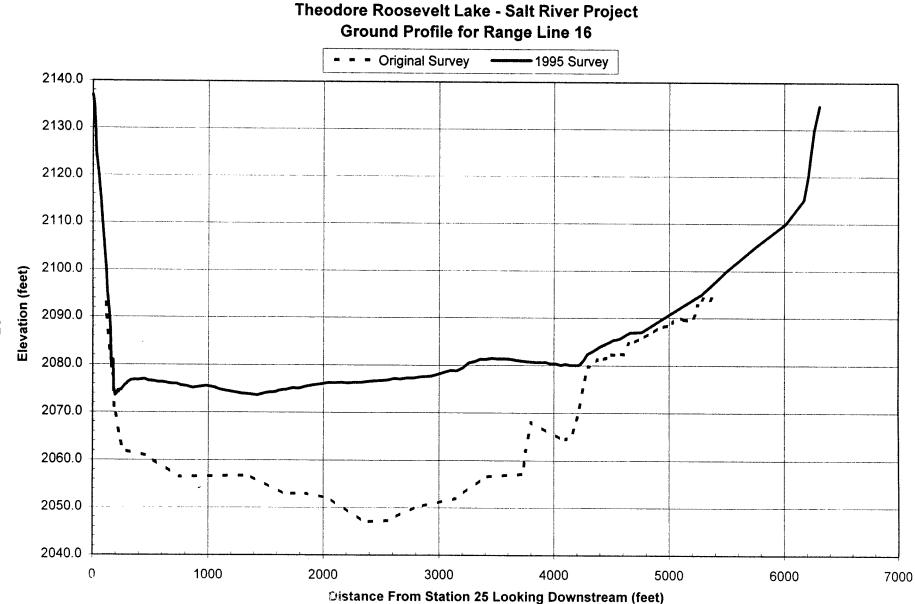
,


1

35


*

ł



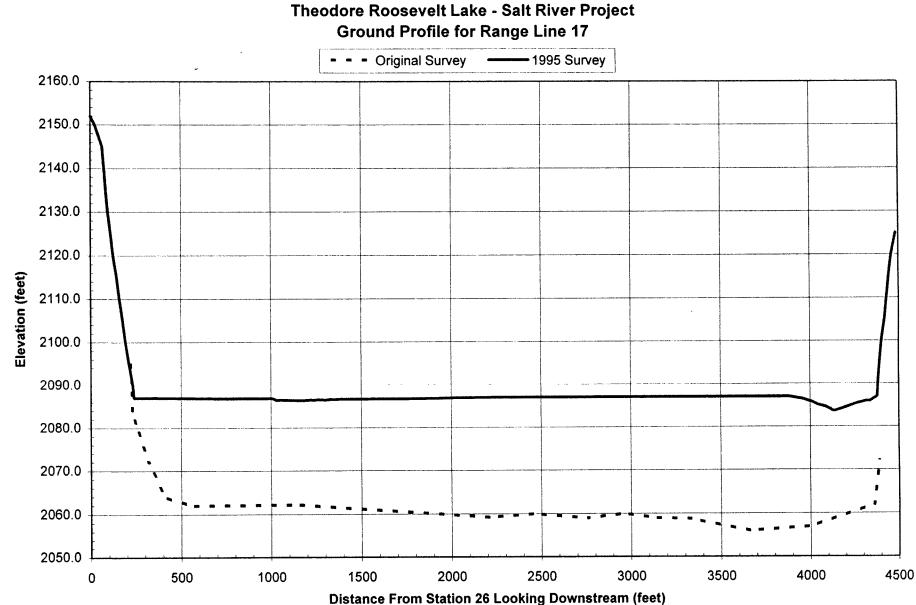
¥

ŧ

•

ţ

3

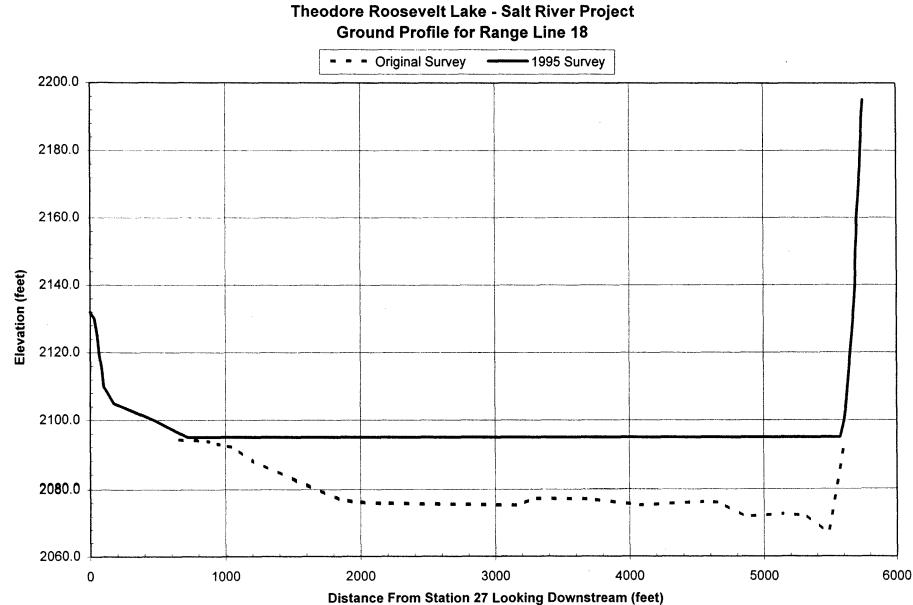

\$

37

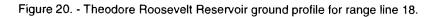
*

ŧ

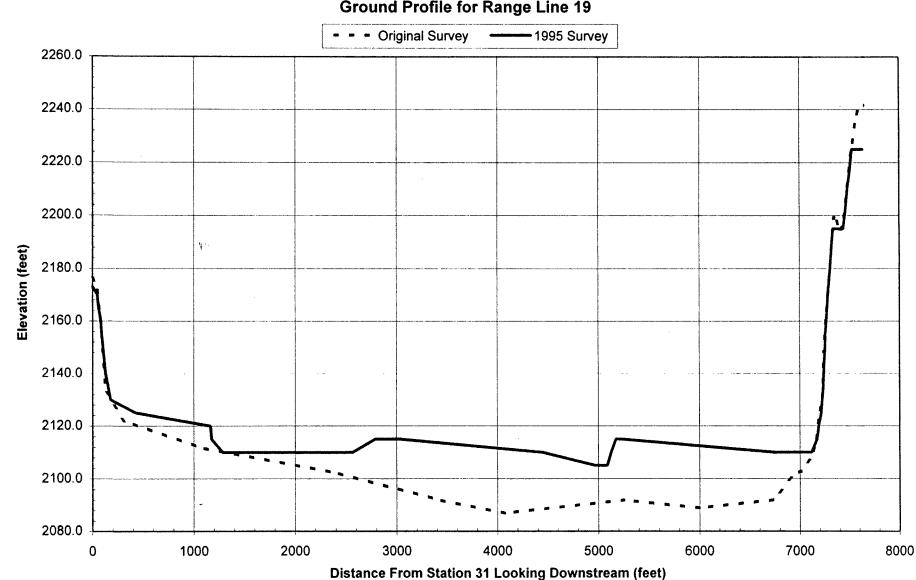
Figure 18. - Theodore Roosevelt Reservoir ground profile for range line 16.


y

1

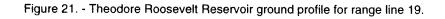

· • •

5

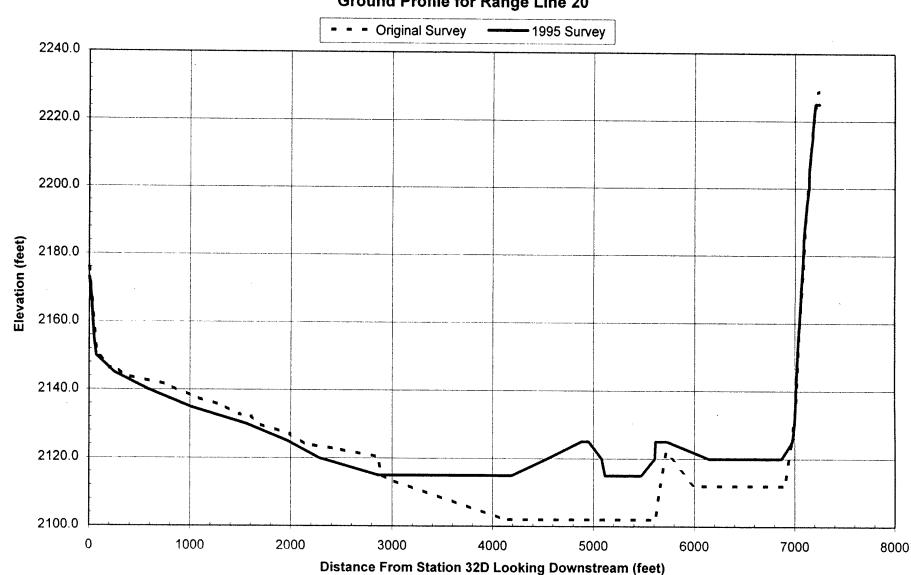

۰.

¥

39


٠

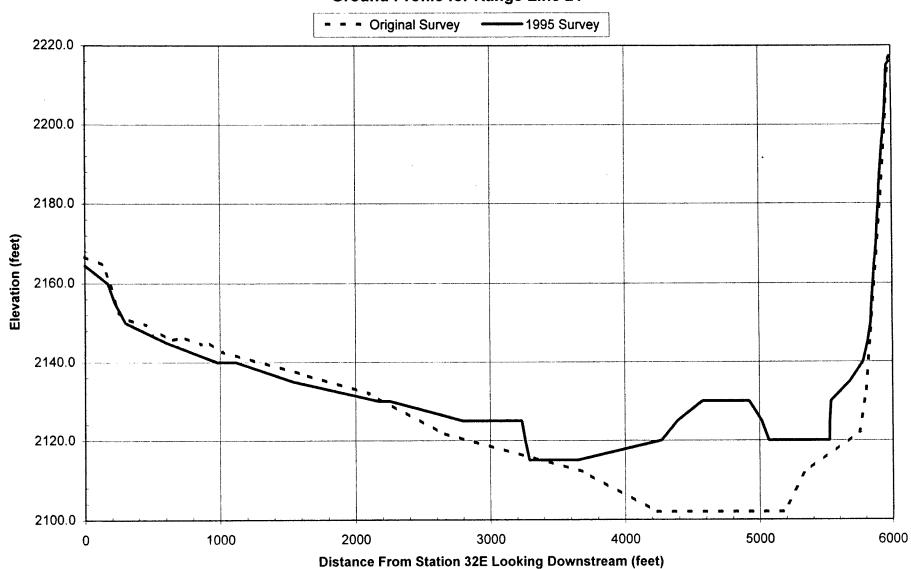
)


2

Theodore Roosevelt Lake - Salt River Project Ground Profile for Range Line 19

40

1


٢

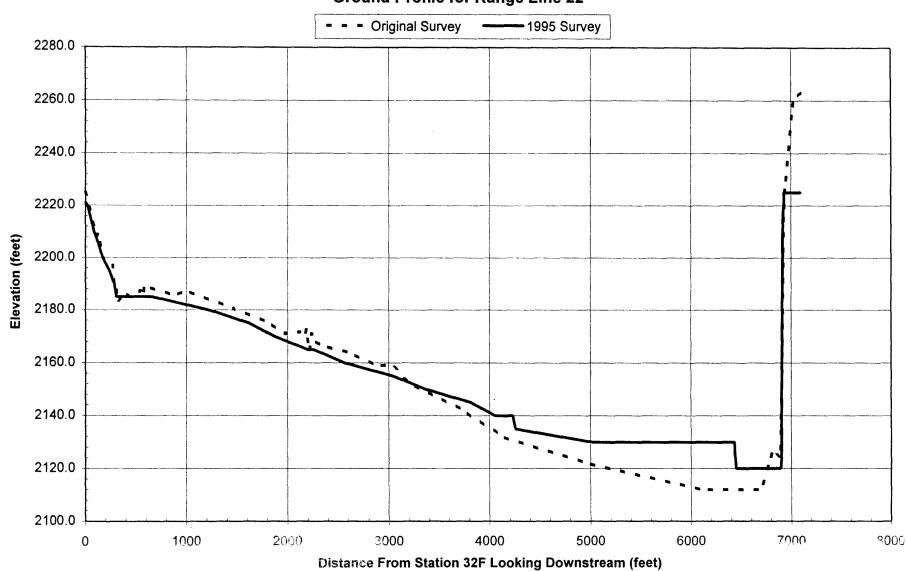
Ł

Figure 22. - Theodore Roosevelt Reservoir ground profile for range line 20.

41

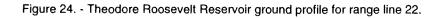
Þ

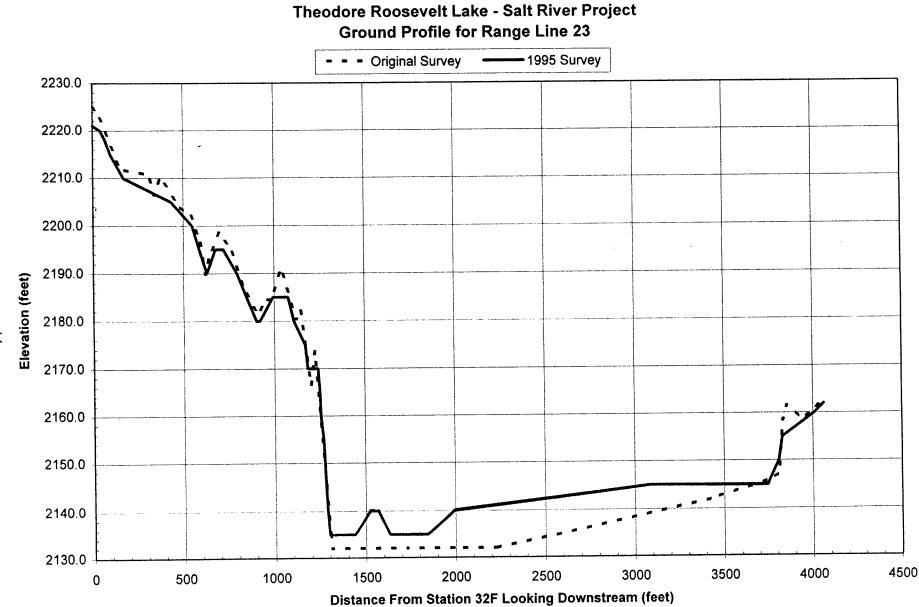
٠.


J

Theodore Roosevelt Lake - Salt River Project Ground Profile for Range Line 21

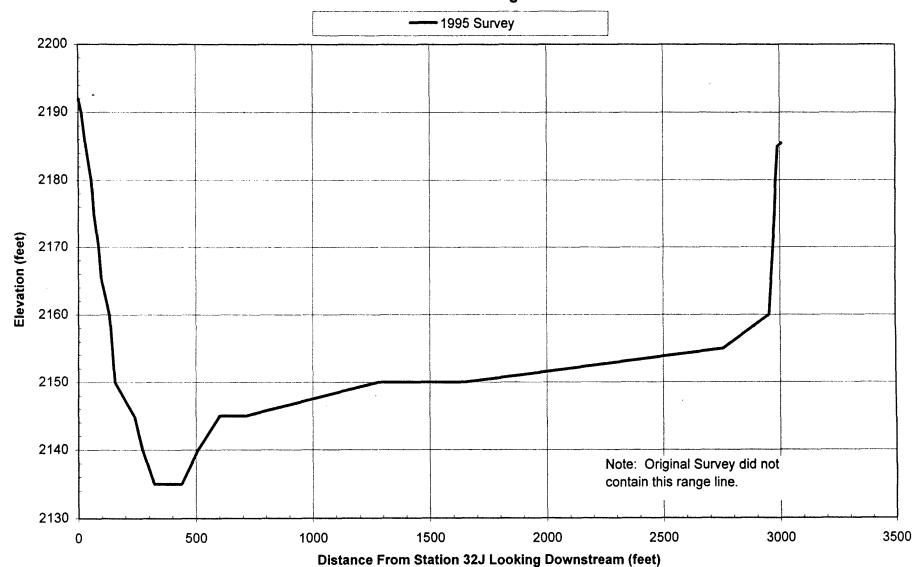
Figure 23. - Theodore Roosevelt Reservoir ground profile for range line 21.


٩

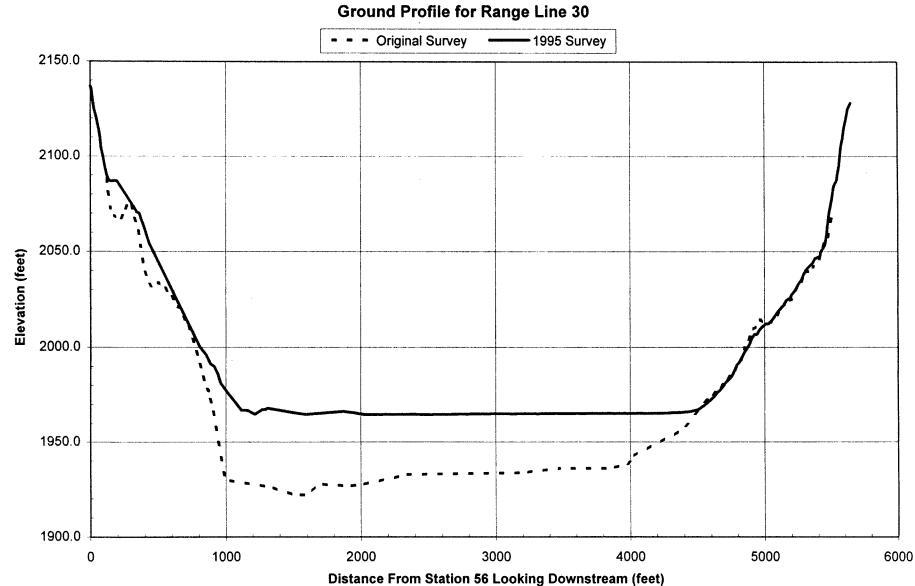

.

r

۴

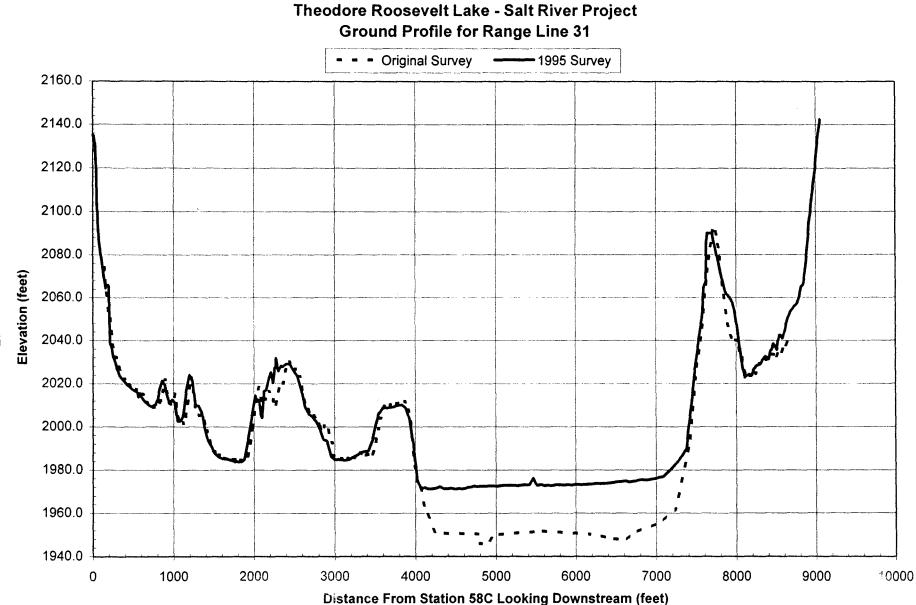


1



*

Ħ



•

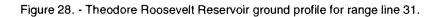
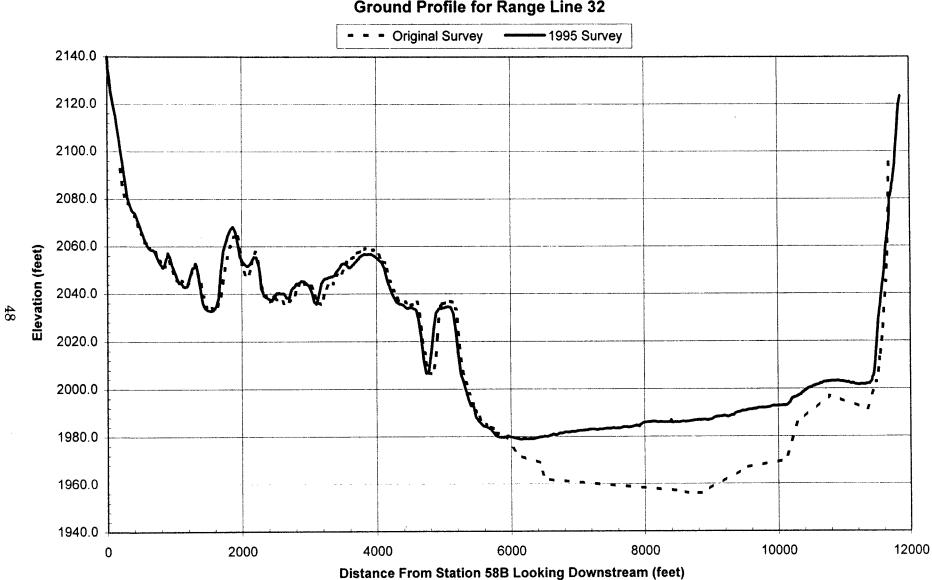
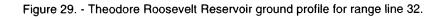

Theodore Roosevelt Lake - Salt River Project

Figure 27. - Theodore Roosevelt Reservoir ground profile for range line 30.

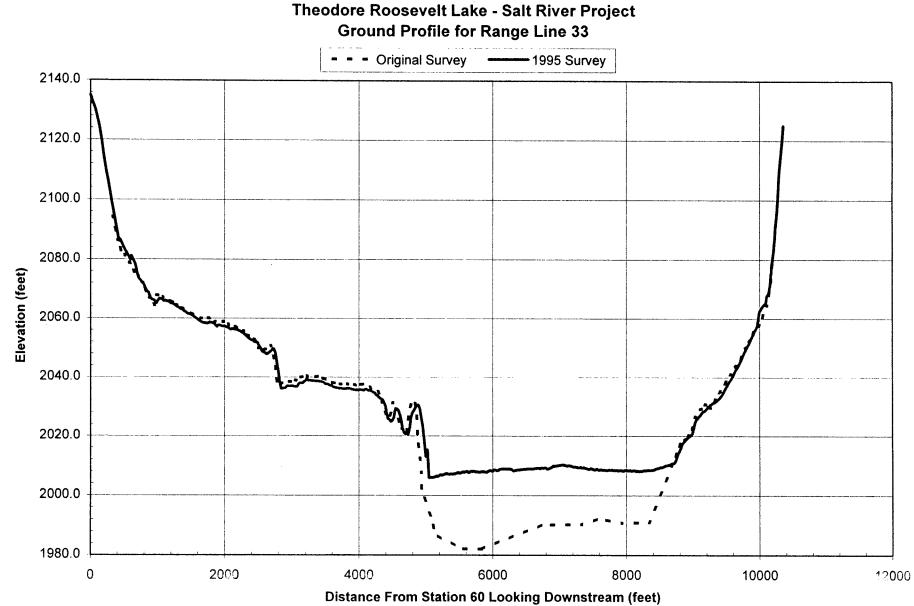
x

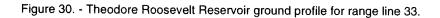



.

47

\$





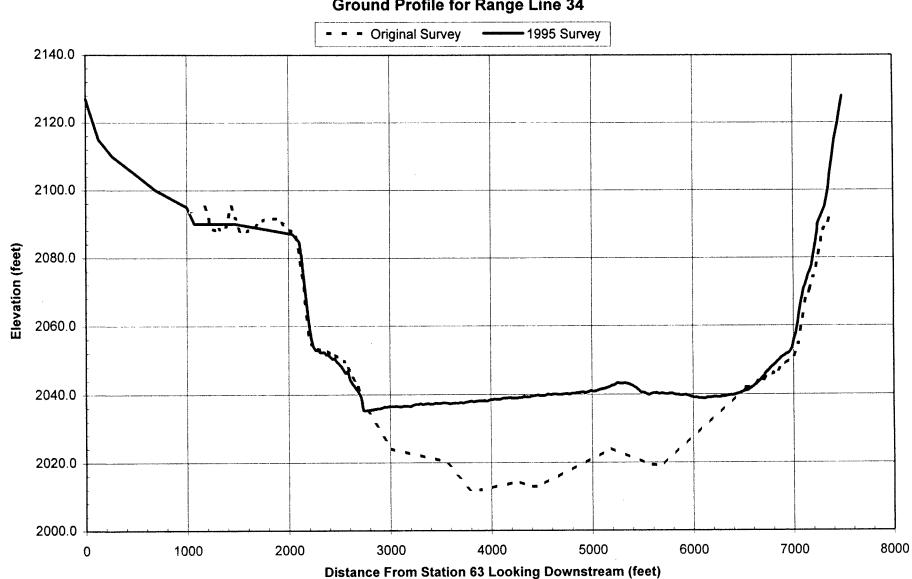
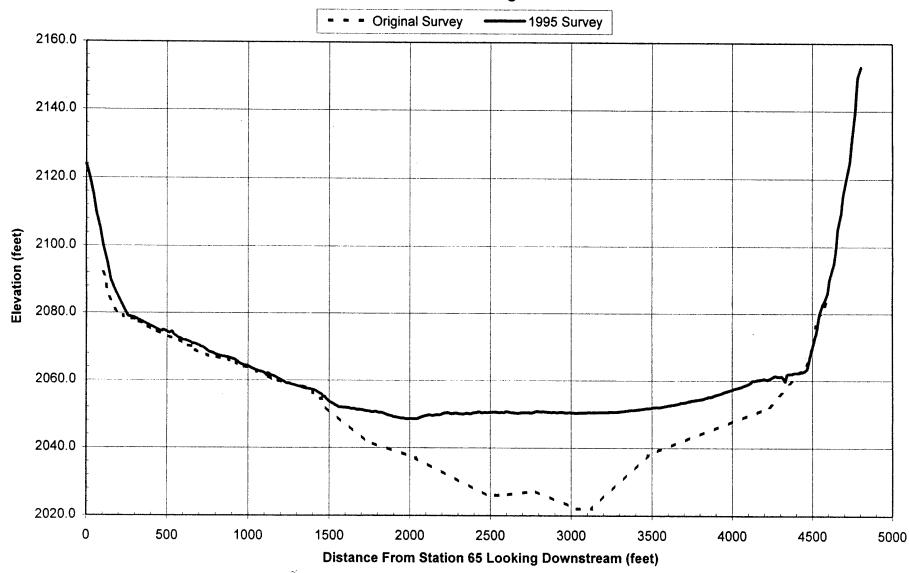
)

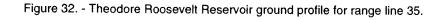
X

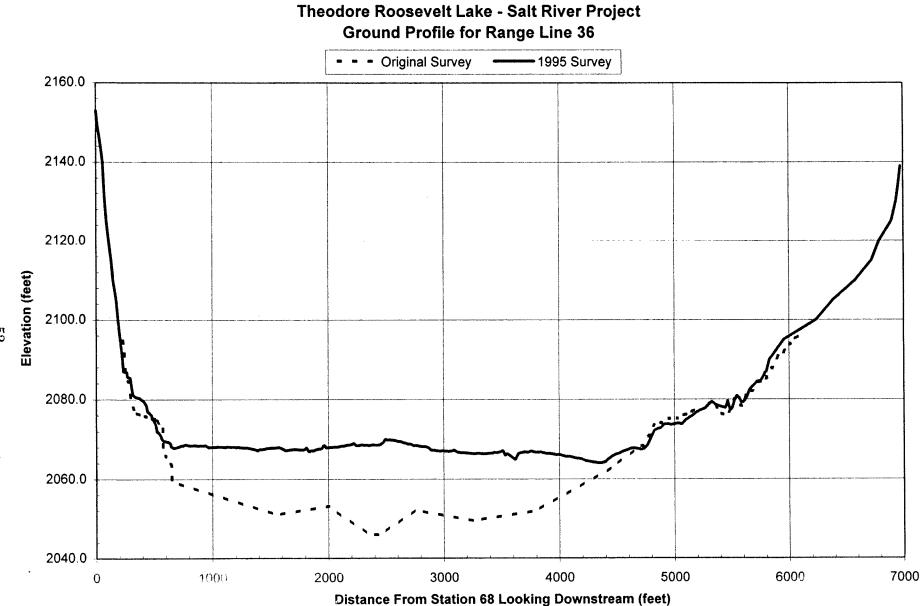
2 · · ·

a)

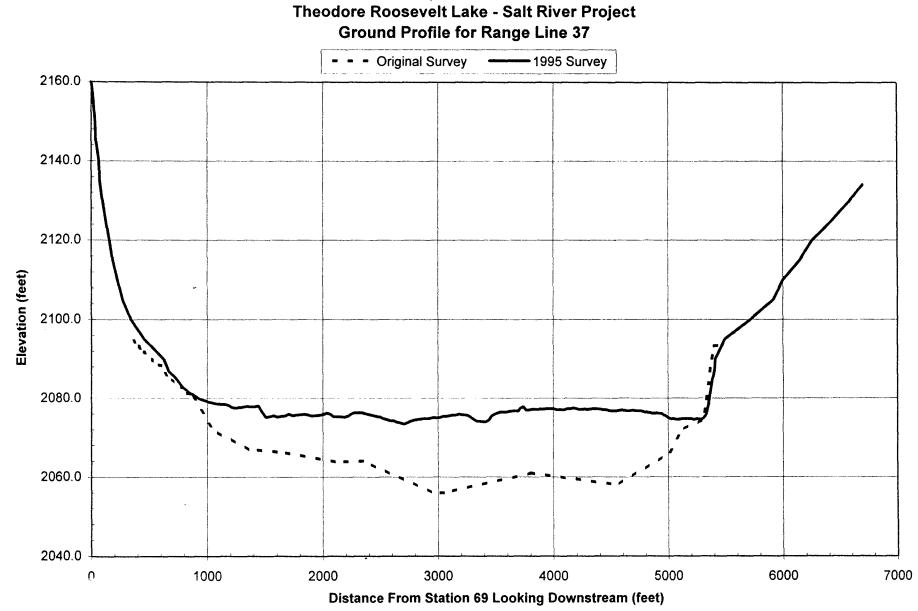
X

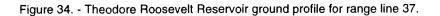




Figure 31. - Theodore Roosevelt Reservoir ground profile for range line 34.

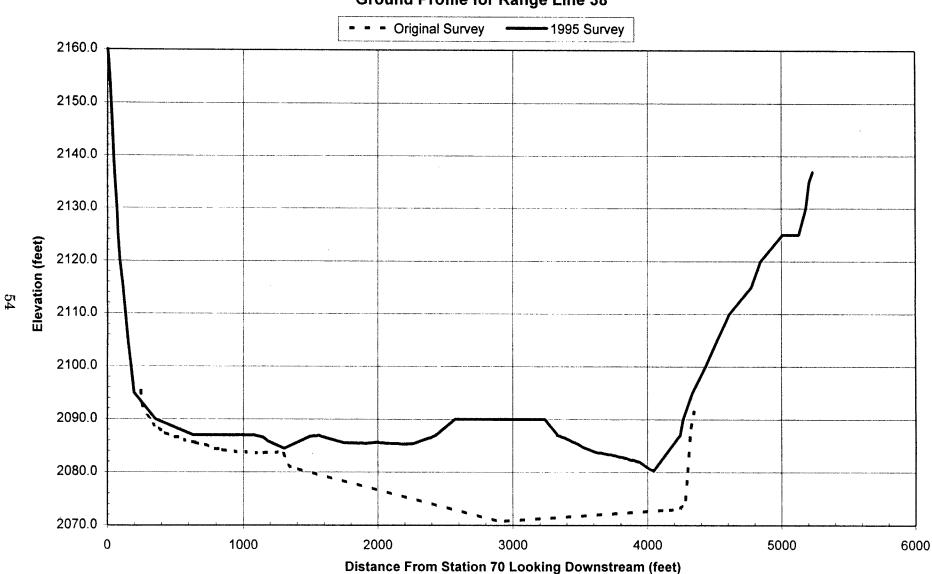

٦

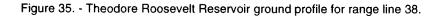
50


i 🔍

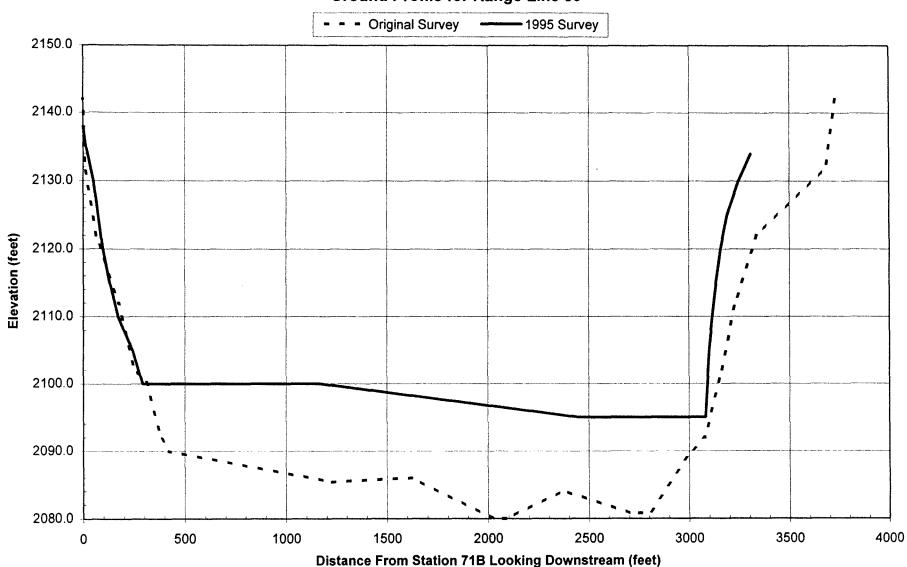


ę

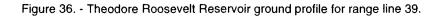

۴



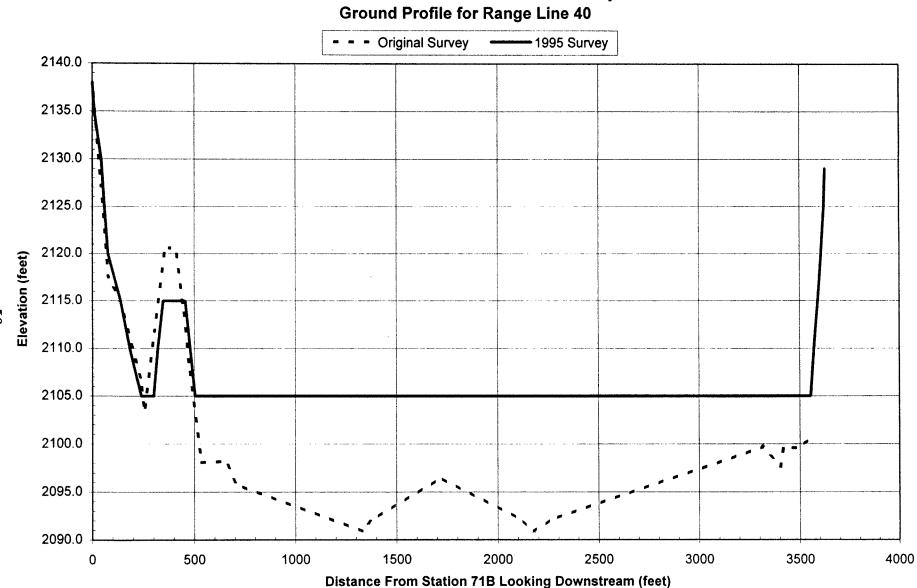
53


3

Ţ

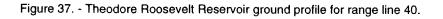


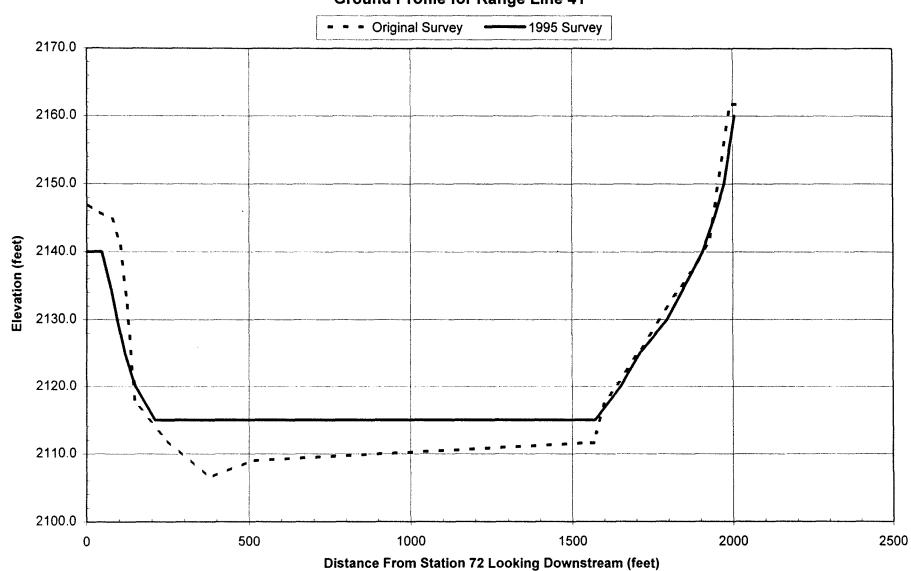
1 (


¢

٩.

55

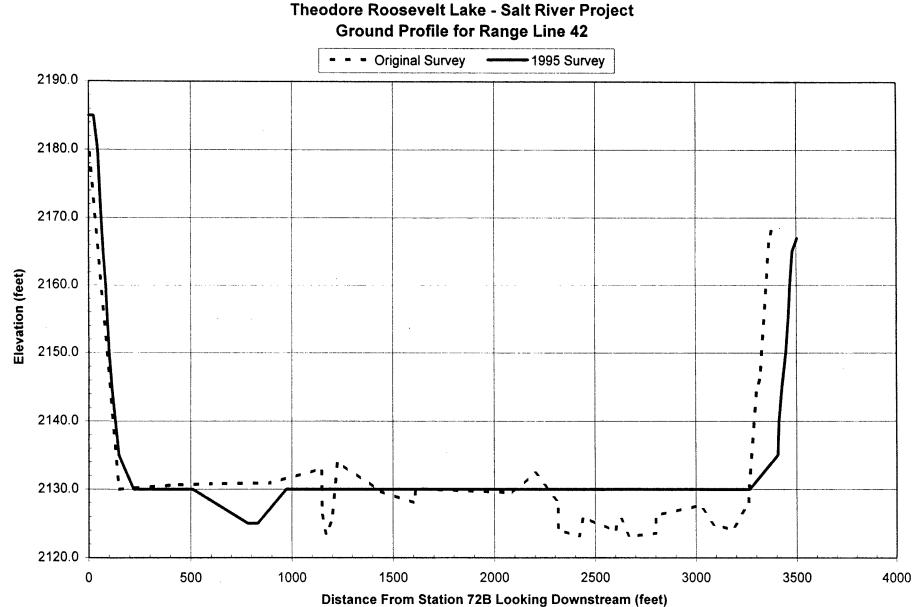

3


*

ŧ

Theodore Roosevelt Lake - Salt River Project

1


¢

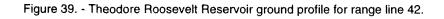
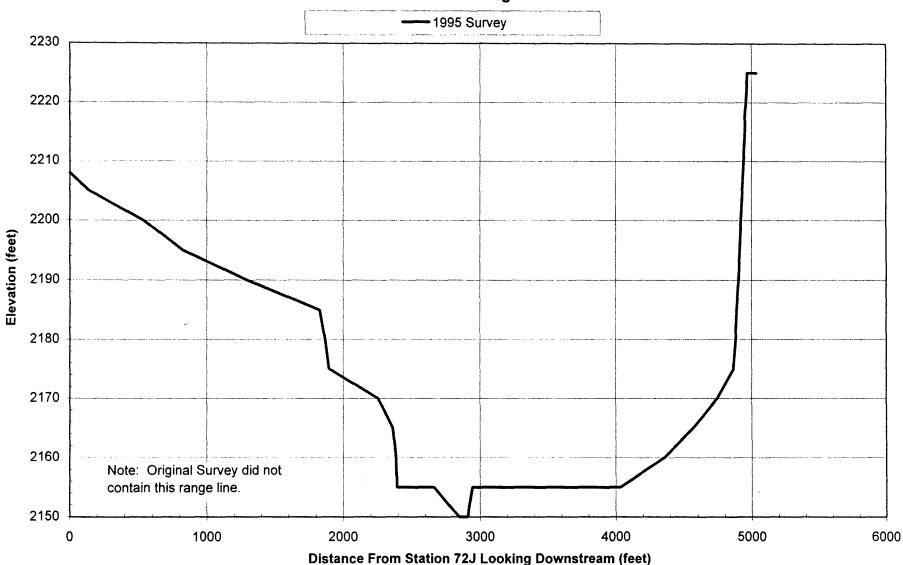
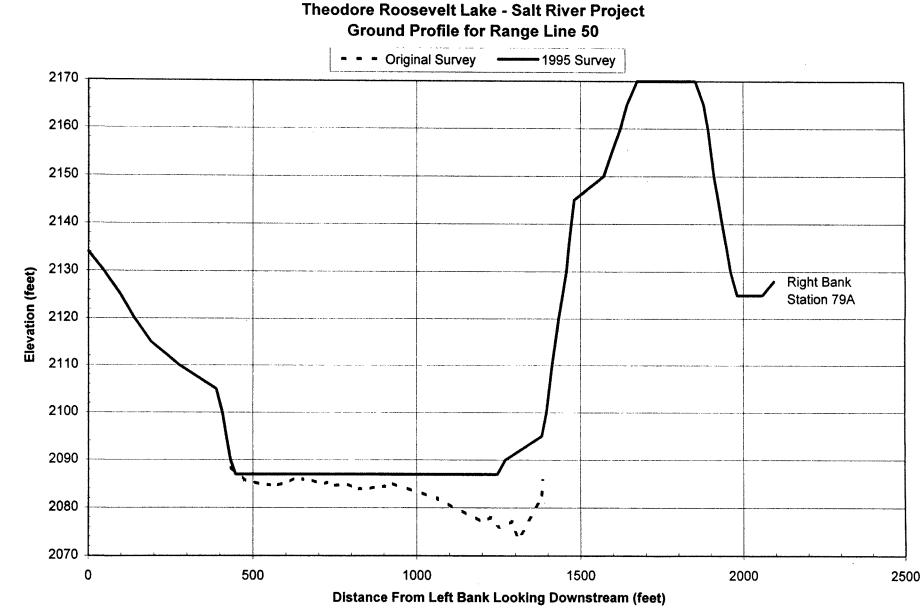

۲

Figure 38. - Theodore Roosevelt Reservoir ground profile for range line 41.


57

¥

+ <


C

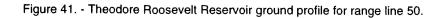
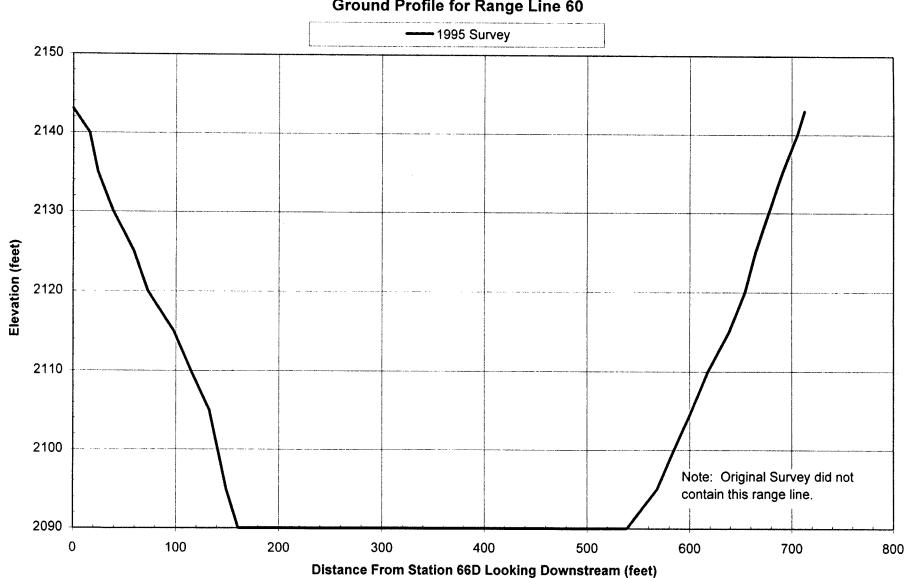
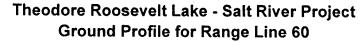

٣

Figure 40. - Theodore Roosevelt Reservoir ground profile for range line 43.


59


ŧ

è

ζ

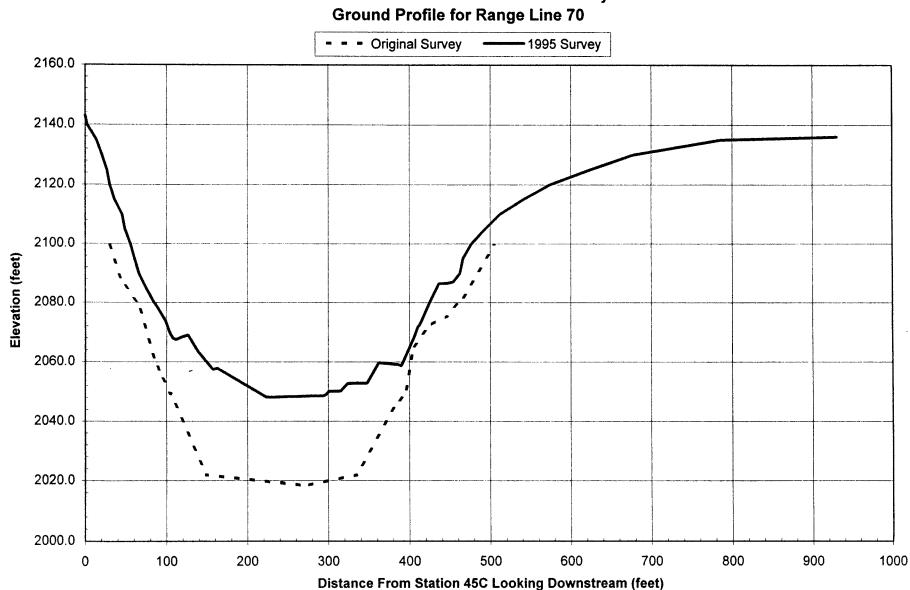
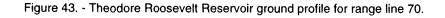

Ŷ

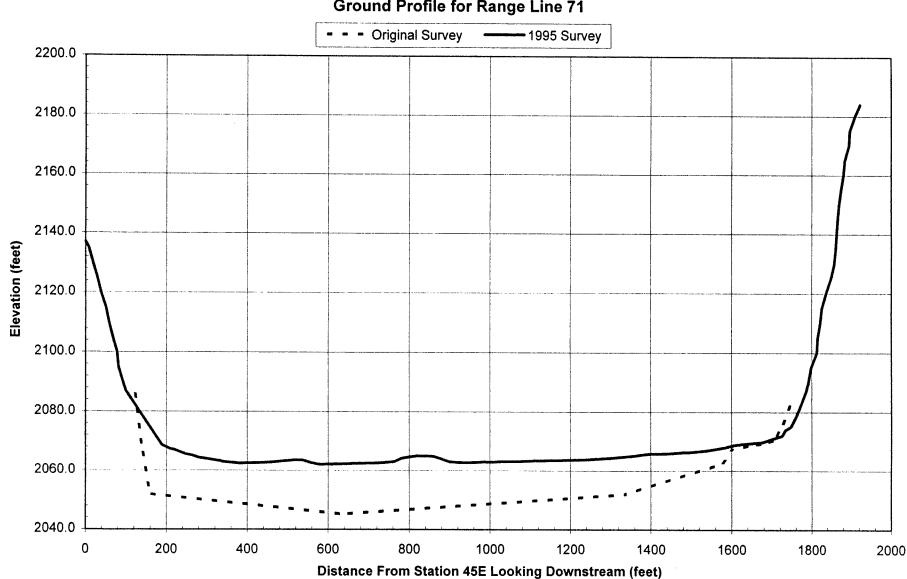
Figure 42. - Theodore Roosevelt Reservoir ground profile for range line 60.

61

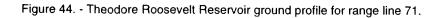
2


ŧ

÷

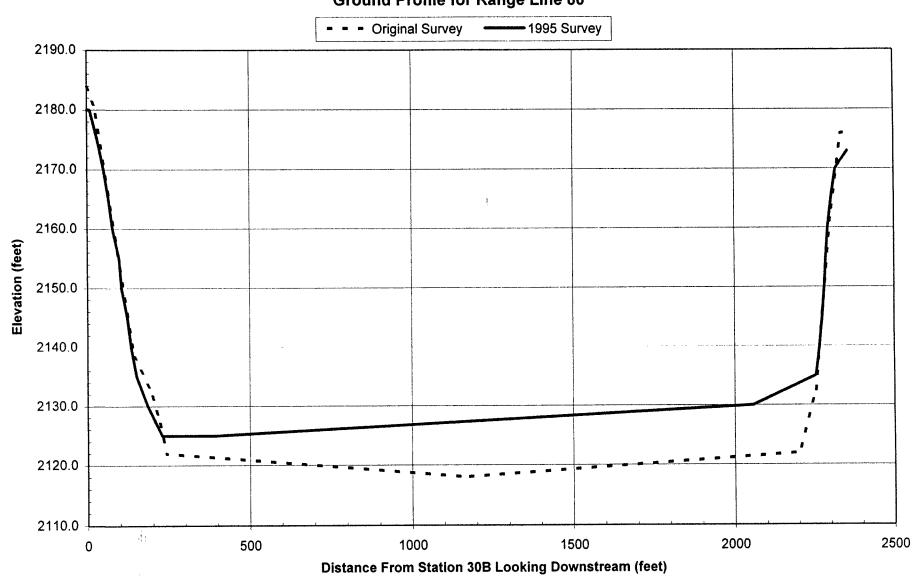

C

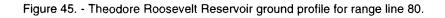
Theodore Roosevelt Lake - Salt River Project



2

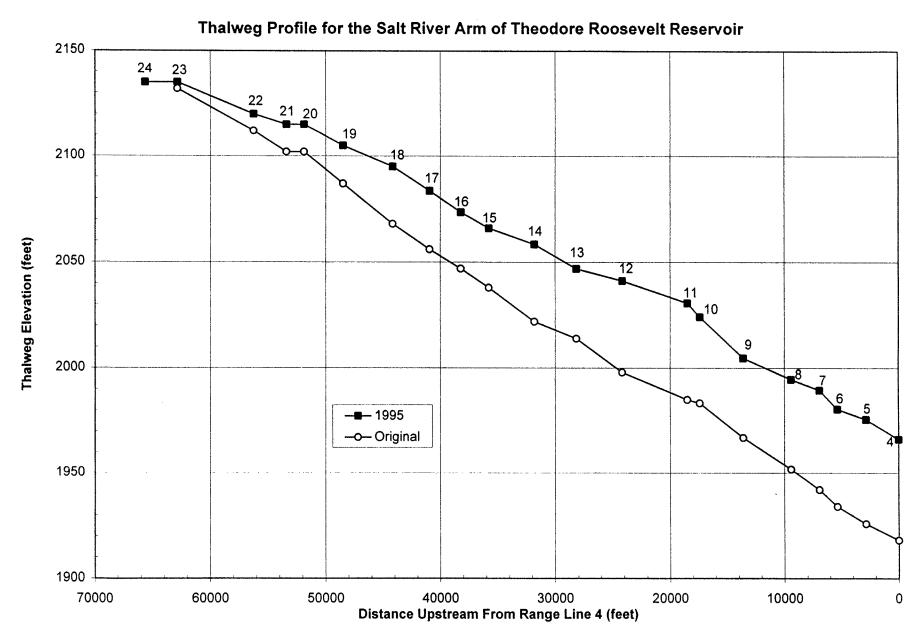
.

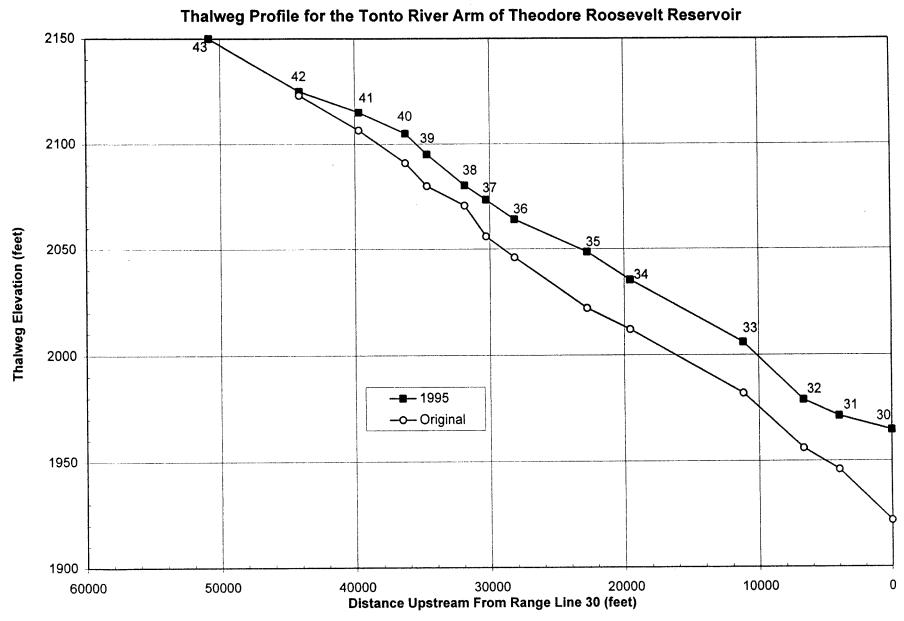

4



63

2


ş



64

5

۳.

*

۲,

Mission

.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American Public.